Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is diffic...Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is difficult to be investigated by linear ultrasound,the second harmonic generation method in nonlinear ultrasound technique is employed in this paper,which is proved to be more sensitive to microdamage.To solve the deficiency that the second harmonic component is easily submerged by noise in traditional nonlinear measurement,a weighted chirp coded sinusoidal signal was applied as the ultrasonic excitation,while pulse inversion is implemented at the receiving side.The effectiveness of this combination to improve the signal-to-noise ratio has been demonstrated by in vitro experiment.Progressive fatigue loading experiments were conducted on the cortical bone plate in vitro for microdamage generation.There was a significant increase in the slope of the acoustic nonlinearity parameter with the propagation distance(increased by 8%and 24%respectively)when the bone specimen was at a progressive level of microdamage.These results indicate that the coded nonlinear ultrasonic method might have the potential in diagnosing bone fatigue.展开更多
The ultrasonic backscatter(UB)has the advantage of non-invasively obtaining bone density and structure,expected to be an assessment tool for early diagnosis osteoporosis.All former UB measurements were based on exciti...The ultrasonic backscatter(UB)has the advantage of non-invasively obtaining bone density and structure,expected to be an assessment tool for early diagnosis osteoporosis.All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone.This study aims to examine amplitude modulation(AM)ultrasonic excitation with UB measurements for predicting bone characteristics.The AM multiple lengths excitation and backscatter measurement(AM-UB)functions were integrated into a portable ultrasonic instrument for bone characterization.The apparent integrated backscatter coefficient in the AM excitation(AIB_(AM))was evaluated on the AM-UB instrumentation.The correlation coefficients of the AIB_(AM) estimating volume fraction(BV/TV),structure model index(SMI),and bone mineral density(BMD)were then analyzed.Significant correlations(|R|=0.82-0.93,p<0.05)were observed between the AIB_(AM),BV/TV,SMI,and BMD.By growing the AM excitation length,the AIB_(AM) values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements.The recommendations in AM-UB measurement were that the avoided length(T1)should be lower than AM excitation length,and the analysis length(T2)should be enough long but not more than AM excitation length.The authors conducted an AM-UB measurement for cancellous bone characterization.Increasing the AM excitation length could substantially enhance AIB_(AM) values stability with varying analyzed signals.The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.展开更多
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2021M690709)the National Natural Science Foundation of China(Grant Nos.11827808,11874289,11804056,and 12034005)+1 种基金the Program of Shanghai Academic Research Leader(Grant No.19XD1400500)the Project of Shanghai Science and Technology Innovation Plan(Grant No.19441903400).
文摘Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is difficult to be investigated by linear ultrasound,the second harmonic generation method in nonlinear ultrasound technique is employed in this paper,which is proved to be more sensitive to microdamage.To solve the deficiency that the second harmonic component is easily submerged by noise in traditional nonlinear measurement,a weighted chirp coded sinusoidal signal was applied as the ultrasonic excitation,while pulse inversion is implemented at the receiving side.The effectiveness of this combination to improve the signal-to-noise ratio has been demonstrated by in vitro experiment.Progressive fatigue loading experiments were conducted on the cortical bone plate in vitro for microdamage generation.There was a significant increase in the slope of the acoustic nonlinearity parameter with the propagation distance(increased by 8%and 24%respectively)when the bone specimen was at a progressive level of microdamage.These results indicate that the coded nonlinear ultrasonic method might have the potential in diagnosing bone fatigue.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12104096,12004079,82127803,11827808,and 61871263)the Shanghai Science and Technology Innovation Plan(Grant Nos.20S31901300 and 19441903400)+1 种基金the Shanghai Rising-Star Program(Grant No.21QC1400100)the China Postdoctoral Science Foundation(Grant No.2021M690709)。
文摘The ultrasonic backscatter(UB)has the advantage of non-invasively obtaining bone density and structure,expected to be an assessment tool for early diagnosis osteoporosis.All former UB measurements were based on exciting a short single-pulse and analyzing the ultrasonic signals backscattered in bone.This study aims to examine amplitude modulation(AM)ultrasonic excitation with UB measurements for predicting bone characteristics.The AM multiple lengths excitation and backscatter measurement(AM-UB)functions were integrated into a portable ultrasonic instrument for bone characterization.The apparent integrated backscatter coefficient in the AM excitation(AIB_(AM))was evaluated on the AM-UB instrumentation.The correlation coefficients of the AIB_(AM) estimating volume fraction(BV/TV),structure model index(SMI),and bone mineral density(BMD)were then analyzed.Significant correlations(|R|=0.82-0.93,p<0.05)were observed between the AIB_(AM),BV/TV,SMI,and BMD.By growing the AM excitation length,the AIB_(AM) values exhibit more stability both in 1.0-MHz and 3.5-MHz measurements.The recommendations in AM-UB measurement were that the avoided length(T1)should be lower than AM excitation length,and the analysis length(T2)should be enough long but not more than AM excitation length.The authors conducted an AM-UB measurement for cancellous bone characterization.Increasing the AM excitation length could substantially enhance AIB_(AM) values stability with varying analyzed signals.The study suggests the portable AM-UB instrument with the integration of real-time analytics software that might provide a potential tool for osteoporosis early screening.