为了解决中度和重度污染的模糊图像去模糊效果差、边缘细节恢复难的问题,提出一种基于压缩感知理论的去模糊算法,即引入数字水印中的Zig-Zag变换,加入信号转换过程中的位置关系信息,对K-奇异值分解(K-singular value decomposition,K-S...为了解决中度和重度污染的模糊图像去模糊效果差、边缘细节恢复难的问题,提出一种基于压缩感知理论的去模糊算法,即引入数字水印中的Zig-Zag变换,加入信号转换过程中的位置关系信息,对K-奇异值分解(K-singular value decomposition,K-SVD)算法进行改进,以优化稀疏系数的稀疏度。实验结果表明,对于中重度模糊图像,新算法的提高信噪比(Improve Signal to Noise Ratio,ISNR)优于K-SVD算法。展开更多
文摘为了解决中度和重度污染的模糊图像去模糊效果差、边缘细节恢复难的问题,提出一种基于压缩感知理论的去模糊算法,即引入数字水印中的Zig-Zag变换,加入信号转换过程中的位置关系信息,对K-奇异值分解(K-singular value decomposition,K-SVD)算法进行改进,以优化稀疏系数的稀疏度。实验结果表明,对于中重度模糊图像,新算法的提高信噪比(Improve Signal to Noise Ratio,ISNR)优于K-SVD算法。