涂层结构设计是实现吸波涂层良好吸收性能的重要手段,利用计算机辅助进行结构设计成为研究趋势。针对当前涂层结构计算机辅助设计存在的运算效率低、优化目标单一、需人工干预等问题,构建了吸波涂层“宽、轻、薄、强”的多目标优化模型...涂层结构设计是实现吸波涂层良好吸收性能的重要手段,利用计算机辅助进行结构设计成为研究趋势。针对当前涂层结构计算机辅助设计存在的运算效率低、优化目标单一、需人工干预等问题,构建了吸波涂层“宽、轻、薄、强”的多目标优化模型,设计了一种基于多目标遗传算法NSGA-Ⅱ的多层吸波涂层结构设计方法,给出了已知材料、已知涂层数下的最优涂层结构设计方案。经实际喷涂测试,采用3号和2号材料的双层吸波涂层经优化后的总厚度为0.6 mm,在18~18 GHz波段的反射率均低于-8 d B.试验验证表明,在保证一定预测冗余的情况下,该方法对雷达波吸收涂层的设计具有一定参考价值。展开更多
文摘涂层结构设计是实现吸波涂层良好吸收性能的重要手段,利用计算机辅助进行结构设计成为研究趋势。针对当前涂层结构计算机辅助设计存在的运算效率低、优化目标单一、需人工干预等问题,构建了吸波涂层“宽、轻、薄、强”的多目标优化模型,设计了一种基于多目标遗传算法NSGA-Ⅱ的多层吸波涂层结构设计方法,给出了已知材料、已知涂层数下的最优涂层结构设计方案。经实际喷涂测试,采用3号和2号材料的双层吸波涂层经优化后的总厚度为0.6 mm,在18~18 GHz波段的反射率均低于-8 d B.试验验证表明,在保证一定预测冗余的情况下,该方法对雷达波吸收涂层的设计具有一定参考价值。