渗透性和离子筛分能力是决定纳滤膜分离性能的主要指标.扩大渗透分离层的表面积不仅是提升膜通量的有效途径,还保持了盐的截留效果.受氨基/亚胺与酰氯缩合交联形成致密的聚酰胺网络的启发,我们提出了一种策略:将多孔的卟啉-苯胺共轭微...渗透性和离子筛分能力是决定纳滤膜分离性能的主要指标.扩大渗透分离层的表面积不仅是提升膜通量的有效途径,还保持了盐的截留效果.受氨基/亚胺与酰氯缩合交联形成致密的聚酰胺网络的启发,我们提出了一种策略:将多孔的卟啉-苯胺共轭微孔聚合物(PACMP)接枝到聚酰胺膜上,从而增大纳滤膜的分离表面积.通过一步界面聚合,制备了一种超渗透的共轭微孔聚合物-聚酰胺复合膜(CPCMs),其水通量为61.8 L m^(−2) h^(−1),对盐(Na_(2)SO_(4))的截留率高于91.6%.此外,由于PACMPs中卟啉基团产生的活性氧,原位光激发单线态氧1O2可杀死98.5%的大肠杆菌和99.7%的金黄色葡萄球菌,从而赋予了CMP-聚酰胺复合膜良好的抗菌性.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB3807100,2022YFB3807102,and 2022YFB3807103)the National Natural Science Foundation of China(22102021 and 52073046)+4 种基金the Fundamental Research Funds for the Central Universities(2232022A-03)Shanghai Shuguang Program(19SG28)the Program of Shanghai Academic Research Leader(21XD1420200)Chang Jiang Scholar Program(Q2019152)the Natural Science Foundation of Shanghai(21ZR1402700 and 23ZR1401100).
文摘渗透性和离子筛分能力是决定纳滤膜分离性能的主要指标.扩大渗透分离层的表面积不仅是提升膜通量的有效途径,还保持了盐的截留效果.受氨基/亚胺与酰氯缩合交联形成致密的聚酰胺网络的启发,我们提出了一种策略:将多孔的卟啉-苯胺共轭微孔聚合物(PACMP)接枝到聚酰胺膜上,从而增大纳滤膜的分离表面积.通过一步界面聚合,制备了一种超渗透的共轭微孔聚合物-聚酰胺复合膜(CPCMs),其水通量为61.8 L m^(−2) h^(−1),对盐(Na_(2)SO_(4))的截留率高于91.6%.此外,由于PACMPs中卟啉基团产生的活性氧,原位光激发单线态氧1O2可杀死98.5%的大肠杆菌和99.7%的金黄色葡萄球菌,从而赋予了CMP-聚酰胺复合膜良好的抗菌性.