A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-crack...A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.展开更多
In order to improve the operability and accuracy of high-intensity focused ultrasound (HIFU), an annular focused transducer, whereby a B-ultrasound probe is placed in its center, is used to realize the real time mon...In order to improve the operability and accuracy of high-intensity focused ultrasound (HIFU), an annular focused transducer, whereby a B-ultrasound probe is placed in its center, is used to realize the real time monitoring and control of the treatment. In this paper, the spheroidal beam equation (SBE) was used to calculate the sound lield by an annular focused transducer with a wide aperture angle to first derive the heat deposition and the Pennes equation was used to calculate the temperature field in multi-layer tissue. We studied the effect of different parameters on the temperature of the tissues. The result shows that the focal length has a significant influence on both maximum liver temperature rise and skin temperature rise, and both increase with the increase in the focal length. When the frequency increases, the temperature rise first undergoes a rapid increase before gradually reaching a maximum, and then finally decreasing. The temperature rise increases while the inner radius decreases or the sound pressure increases. By choosing suitable parameters, the proper temperature rise both on the target tissue and skin via an annular tbcused transducer with a wide aperture angle can be obtained.展开更多
Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajector...Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajectory of lhe particle. The simulations show that the particle can be pulled or propelled into either the positive or negative transverse direction by turning the phase difference between the two AiG beams appropriately; and the larger the beam widths of the two AiG beams are, the bigger the radiation force can be obtained to control the particle. In addition, the direction of the accelerated particle can be controlled while the dimensionless frequency bandwidth changes. The results indicate that the phase plays an important role in controlling the direction of the particle, which may provide a theoretical basis for the design of acoustical tweezers and the development of drug delivery.展开更多
We present a unique method to describe the bonding strength at a bonded solid-solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid-so...We present a unique method to describe the bonding strength at a bonded solid-solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid-solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour.展开更多
We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly d...We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly described.The vibration amplitude of the incident focusing wave at the bonded interface is calculated,the standard bonding strength with a complete bonding state is established by the tension test,and the CAN parameter is calibrated.The quantitative contour of bonding strength at the interface could be obtained.The experimental contours of two samples are also presented.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFF0203000)the State Key Program of the National Natural Science Foundation of China(Grant No.11834008)+3 种基金the National Natural Science Foundation of China(Grant No.11774167)the Fund from the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201809)the Science Fund from the Key Laboratory of Underwater Acoustic Environment,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the Natural Science Fund for AQSIQ Technology Research and Development Program,China(Grant No.2017QK125).
文摘A promising tool to detect micro-cracks in plate-like structures is used for generating higher harmonic Lamb waves.In this paper,a method combining nonlinear S0 mode Lamb waves with time reversal to locate micro-cracks is presented and verified by numerical simulations.Two different models,the contact acoustic nonlinearity(CAN)model and the Preisach-Mayergoyz(PM)model,are used to simulate a localized damage in a thin plate.Pulse inversion method is employed to extract the second and fourth harmonics from the received signal.Time reversal is performed to compensate the dispersion of S0 mode Lamb waves.Consequently,the higher harmonics generated from the damaged area can be refocused on their source.By investigating the spatial distribution of harmonic wave packets,the location of micro-cracks will be revealed.The numerical simulations indicate that this method gives accurate locations of the damaged area in a plate.Furthermore,the PM model is proved to be a suitable model to simulate the micro-cracks in plates for generation of higher harmonics.
基金Project supported by the National Key Research and Development Program,China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.020414380001)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201609)AQSIQ Technology Research and Development Program,China(Grant No.2017QK125)
文摘In order to improve the operability and accuracy of high-intensity focused ultrasound (HIFU), an annular focused transducer, whereby a B-ultrasound probe is placed in its center, is used to realize the real time monitoring and control of the treatment. In this paper, the spheroidal beam equation (SBE) was used to calculate the sound lield by an annular focused transducer with a wide aperture angle to first derive the heat deposition and the Pennes equation was used to calculate the temperature field in multi-layer tissue. We studied the effect of different parameters on the temperature of the tissues. The result shows that the focal length has a significant influence on both maximum liver temperature rise and skin temperature rise, and both increase with the increase in the focal length. When the frequency increases, the temperature rise first undergoes a rapid increase before gradually reaching a maximum, and then finally decreasing. The temperature rise increases while the inner radius decreases or the sound pressure increases. By choosing suitable parameters, the proper temperature rise both on the target tissue and skin via an annular tbcused transducer with a wide aperture angle can be obtained.
基金Project supported by the National Key R&D Program,China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金Fundamental Research Funds for the Central Universities,China(Grant No.020414380001)State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201609)AQSIQ Technology R&D Program,China(Grant No.2017QK125)
文摘Based on the angular spectrum decomposition and partial-wave series expansion methods, we investigate the radiation force functions of two Airy-Gaussian (AiG) beams on a cylindrical particle and the motion trajectory of lhe particle. The simulations show that the particle can be pulled or propelled into either the positive or negative transverse direction by turning the phase difference between the two AiG beams appropriately; and the larger the beam widths of the two AiG beams are, the bigger the radiation force can be obtained to control the particle. In addition, the direction of the accelerated particle can be controlled while the dimensionless frequency bandwidth changes. The results indicate that the phase plays an important role in controlling the direction of the particle, which may provide a theoretical basis for the design of acoustical tweezers and the development of drug delivery.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10234060, 10574072 and 10874084.
文摘We present a unique method to describe the bonding strength at a bonded solid-solid interface in a multilayered composite material by contact acoustic nonlinearity (CAN) parameter. A CAN model on the bonded solid-solid interface is depicted. It can be seen from the model that CAN parameter is very sensitive to the bonding strength at the interface. When an incident focusing acoustic longitudinal wave scans the interface in two dimensions, the transmitted wave can be used to extract CAN parameter. The contour of the bonding strength for a sample is obtained by CAN parameter. The results show that the region with weak bonding strength can be easily distinguished from the contour.
基金by the National Natural Science Foundation of China under Grant No 10874084.
文摘We propose a nondestructive method to characterize the quantitative bonding strength at a bonded solid-solid interface by a contact acoustic nonlinearity(CAN)microscope.The principle of the CAN microscope is briefly described.The vibration amplitude of the incident focusing wave at the bonded interface is calculated,the standard bonding strength with a complete bonding state is established by the tension test,and the CAN parameter is calibrated.The quantitative contour of bonding strength at the interface could be obtained.The experimental contours of two samples are also presented.