预测电池健康状态(state of health,SOH)的传统方法,一般以历史数据为依据,既难以预测电池实时状态,也无法估计锂电池剩余使用寿命。针对实时预测电池SOH的问题,文章依据采集的大量实车电池数据,结合机器学习与安时积分法对其进行建模预...预测电池健康状态(state of health,SOH)的传统方法,一般以历史数据为依据,既难以预测电池实时状态,也无法估计锂电池剩余使用寿命。针对实时预测电池SOH的问题,文章依据采集的大量实车电池数据,结合机器学习与安时积分法对其进行建模预测,处理特征并训练数据。基于模型测试结果,文章提出融合LightGBM与CatBoost算法的实时SOH混合预测模型。通过两辆实车为载体进行混合模型的验证,所测算的实时SOH预测绝对平均误差为0.009。针对电池剩余使用寿命的问题,研究的目标为获取SOH衰减曲线。因此建立长短记忆(LSTM)神经网络模型预测电池SOH的未来衰减曲线,以固定时间间隔内的SOH差值为特征,减小差值波动,保证数据近似具有相同分布规律。通过对某原始设备制造商提供的实时监视数据集的验证,得出未来衰减曲线预测的绝对平均误差为0.021。总体结果表明:文章研究的锂电池实时SOH预测模型与剩余寿命预测模型,预测精度较高,电池使用方可以更好掌握锂电池的实时状态,为相关决策提供依据。展开更多
Utilizing sunlight as a renewable energy source,photocatalysis offers a potential solution to global warming and energy shortages by converting CO_(2) into useful solar fuels,including CO,CH4,CH3OH,and C2H5OH.Among th...Utilizing sunlight as a renewable energy source,photocatalysis offers a potential solution to global warming and energy shortages by converting CO_(2) into useful solar fuels,including CO,CH4,CH3OH,and C2H5OH.Among the various formulations investigated,copper-based photocatalysts stand out as particularly appealing for CO_(2) conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals.This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO_(2) reduction reactions,including metallic copper,copper oxide,and cuprous oxide photocatalysts.The review also provides a categorical summary of the CO_(2) reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst.Finally,this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO_(2) reduction,focusing on boosting energy utilization and improving product formation rates.展开更多
探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo_(2)S_(4)(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H_(2)O和O_(2)的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实...探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo_(2)S_(4)(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H_(2)O和O_(2)的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实验首次揭示了在NCS中引入P杂原子不仅加速了电子从体相向表面的转移动力学,而且降低了掺杂P原子附近活性S位上的析氢反应势垒.利用DFT计算的穿透能垒预测了rGO覆盖层在P掺杂NCS(P-NCS)表面对质子的渗透性和对H_(2)O和O_(2)分子的抵抗性等重要功能,并用X射线光电子能谱对新催化剂和回收催化剂进行了验证.利用P掺杂剂和rGO覆盖层分别辅助电荷传递和质子传递,通过二者的协同作用获得了催化活性和耐久性之间的平衡.因此,优化后的P-NCS/rGO在70 mV的低过电位下实现了10 mA cm^(-2)的电流密度,并具有令人满意的80小时耐用性.本工作阐明了石墨烯覆盖硫化物催化剂可通过调控电子结构和质子/分子穿透提高电催化性能.展开更多
文摘预测电池健康状态(state of health,SOH)的传统方法,一般以历史数据为依据,既难以预测电池实时状态,也无法估计锂电池剩余使用寿命。针对实时预测电池SOH的问题,文章依据采集的大量实车电池数据,结合机器学习与安时积分法对其进行建模预测,处理特征并训练数据。基于模型测试结果,文章提出融合LightGBM与CatBoost算法的实时SOH混合预测模型。通过两辆实车为载体进行混合模型的验证,所测算的实时SOH预测绝对平均误差为0.009。针对电池剩余使用寿命的问题,研究的目标为获取SOH衰减曲线。因此建立长短记忆(LSTM)神经网络模型预测电池SOH的未来衰减曲线,以固定时间间隔内的SOH差值为特征,减小差值波动,保证数据近似具有相同分布规律。通过对某原始设备制造商提供的实时监视数据集的验证,得出未来衰减曲线预测的绝对平均误差为0.021。总体结果表明:文章研究的锂电池实时SOH预测模型与剩余寿命预测模型,预测精度较高,电池使用方可以更好掌握锂电池的实时状态,为相关决策提供依据。
文摘Utilizing sunlight as a renewable energy source,photocatalysis offers a potential solution to global warming and energy shortages by converting CO_(2) into useful solar fuels,including CO,CH4,CH3OH,and C2H5OH.Among the various formulations investigated,copper-based photocatalysts stand out as particularly appealing for CO_(2) conversion due to their cost-effectiveness and higher abundance in comparison to catalysts based on precious metals.This literature review provides a thorough summary of the latest developments in copper-based photocatalysts used for CO_(2) reduction reactions,including metallic copper,copper oxide,and cuprous oxide photocatalysts.The review also provides a categorical summary of the CO_(2) reduction products and a detailed categorical discussion of the means of modulation and modification of each copper-based catalyst.Finally,this review highlights the existing challenges and proposes future research directions in the development of copper-based photocatalysts for CO_(2) reduction,focusing on boosting energy utilization and improving product formation rates.
基金supported by the National Key R&D Program of China(2021YFA1501900)the National Natural Science Foundation of China-Yunnan Joint Fund(U2102215)+4 种基金the National Natural Science Foundation of China(22209203)China Postdoctoral Science Foundation(2021M693419)Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization(PCSX202202)the Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology(CUMTMS202202 and CUMTMS202207)the Open Sharing Fund for the Large-scale Instruments and Equipment of China University of Mining and Technology。
文摘探索具有优异导电性和稳定性的非贵金属电催化剂对氢经济至关重要.本研究将杂原子掺杂和石墨烯包覆相结合,以控制NiCo_(2)S_(4)(NCS)蛋黄壳微球的电子性能,并抵抗酸性介质中H_(2)O和O_(2)的腐蚀.密度泛函理论(DFT)模拟结合综合表征和实验首次揭示了在NCS中引入P杂原子不仅加速了电子从体相向表面的转移动力学,而且降低了掺杂P原子附近活性S位上的析氢反应势垒.利用DFT计算的穿透能垒预测了rGO覆盖层在P掺杂NCS(P-NCS)表面对质子的渗透性和对H_(2)O和O_(2)分子的抵抗性等重要功能,并用X射线光电子能谱对新催化剂和回收催化剂进行了验证.利用P掺杂剂和rGO覆盖层分别辅助电荷传递和质子传递,通过二者的协同作用获得了催化活性和耐久性之间的平衡.因此,优化后的P-NCS/rGO在70 mV的低过电位下实现了10 mA cm^(-2)的电流密度,并具有令人满意的80小时耐用性.本工作阐明了石墨烯覆盖硫化物催化剂可通过调控电子结构和质子/分子穿透提高电催化性能.