期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于优化循环生成对抗网络的医学图像合成方法 被引量:5
1
作者 曹国刚 刘顺堃 +3 位作者 毛红东 张术 陈颖 戴翠霞 《数据采集与处理》 CSCD 北大核心 2022年第1期155-163,共9页
放射治疗计划系统需要CT图像准确计算剂量分布,但有时临床只能获得MR图像。图像合成能有效利用现有图像合成新模态图像,从而增强图像信息。针对MR图像生成CT图像问题,综合循环一致生成对抗网络不成对数据可训练合成新模态图像的特点,以... 放射治疗计划系统需要CT图像准确计算剂量分布,但有时临床只能获得MR图像。图像合成能有效利用现有图像合成新模态图像,从而增强图像信息。针对MR图像生成CT图像问题,综合循环一致生成对抗网络不成对数据可训练合成新模态图像的特点,以及密集连接网络的特征复用和优化信息流传播的优点,提出融合密集连接的循环生成对抗网络模型,改善输入信息的消失和梯度信息稀释,合成更可信的CT图像。在18个病人的数据集上训练和验证模型,优化后的循环生成对抗网络与原方法相比,平均绝对误差降低了3.91%,结构相似性提高了1.1%,峰值信噪比提高了4.4%;与深度卷积神经网络模型和基于图谱方法比较,相对误差分别降低了0.065%和0.55%。本文利用深度学习模型优点,能根据MR图像合成更接近真实的CT图像,更好地满足放射治疗计划系统剂量计算的需求。 展开更多
关键词 图像合成 循环生成对抗网络 密集连接网络 不成对数据
下载PDF
SAU-Net:融合压缩注意力机制的多器官图像分割
2
作者 曹国刚 毛红东 +2 位作者 张术 陈颖 戴翠霞 《激光与光电子学进展》 CSCD 北大核心 2022年第4期355-364,共10页
为了对头颈部多器官CT图像实现精准分割,减少放射治疗对人体正常组织的损伤,本文提出一种基于卷积神经网络的图像分割方法——SAU-Net算法,该算法基于加入残差连接的3D U-Net实现。针对器官尺寸差异较大而引起的分割精度不准确问题,引... 为了对头颈部多器官CT图像实现精准分割,减少放射治疗对人体正常组织的损伤,本文提出一种基于卷积神经网络的图像分割方法——SAU-Net算法,该算法基于加入残差连接的3D U-Net实现。针对器官尺寸差异较大而引起的分割精度不准确问题,引入压缩注意力模块,通过非局部的空间注意力机制增加对全局特征的编码能力,聚合多尺度上下文信息,实现同一器官的体素分组。此外,该算法减少了卷积核数量及参数量,避免因额外的卷积运算造成堆叠局部信息过多而影响模型性能。结果表明,以Dice系数为评估指标,与3D U-Net和3D ResUNet算法相比,SAU-Net的分割精度分别提高了13.7%和8.2%,推理速度比FocusNetv2提升73%。SAU-Net算法显著提高了头颈部器官图像的分割精度和速度,能够快速准确实现全自动分割任务。 展开更多
关键词 图像处理 卷积神经网络 3D U-Net 残差连接 压缩注意力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部