期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于点线特征融合的低纹理单目视觉同时定位与地图构建算法 被引量:4
1
作者 潘高峰 樊渊 +1 位作者 汝玉 郭予超 《计算机应用》 CSCD 北大核心 2022年第7期2170-2176,共7页
当图像因相机快速运动造成模糊或者处在低纹理场景时,仅使用点特征的同步定位与地图构建(SLAM)算法难以跟踪提取足够多的特征点,导致定位精度和匹配鲁棒性较差。而如果造成误匹配,甚至系统都无法工作。针对上述问题,提出了一种基于点线... 当图像因相机快速运动造成模糊或者处在低纹理场景时,仅使用点特征的同步定位与地图构建(SLAM)算法难以跟踪提取足够多的特征点,导致定位精度和匹配鲁棒性较差。而如果造成误匹配,甚至系统都无法工作。针对上述问题,提出了一种基于点线特征融合的低纹理单目SLAM算法。首先,加入了线特征来加强系统稳定性,并解决了点特征算法在低纹理场景中提取不足的问题;然后,对点、线特征提取数量的选择引入了加权的思想,根据场景的丰富程度,对点线特征的权重进行了合理分配。所提算法是在低纹理场景下运行的,因而设置以线特征为主、点特征为辅。在TUM室内数据集上的实验结果表明,与现有的点线特征算法相比,所提算法有效地提高了线特征的匹配精度,使得轨迹误差减小了大约9个百分点,也使得特征提取时间减少了30个百分点,使加入的线特征在低纹理场景中发挥出积极有效的作用,提高了数据整体的准确度和可信度。 展开更多
关键词 单目视觉 点线融合 线匹配 低纹理场景 特征加权
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部