The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic...The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520. 540, and 580 ℃ for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 ℃. When the blue shift was 24.7 meV at 480 ℃, the COD power for the window LD was 86.7% higher than the conventional LD.展开更多
基金The authors would like to thank Guohong Wang for thegrowth of the GaInP/AIGaInP material, and Qiang Gui for assistance in experimental workThe research was supported by the National Natural Science Foundation of China under Grant No. 60236030
文摘The layer structure of GaInP/AlGaInP quantum well laser diodes (LDs) was grown on GaAs substrate using low-pressure metalorganic chemical vapor deposition (LP-MOCVD) technique. In order to improve the catastrophic optical damage (COD) level of devices, a nonabsorbing window (NAW), which was based on Zn diffusion-induced quantum well intermixing, was fabricated near the both ends of the cavities. Zn diffusions were respectively carried out at 480, 500, 520. 540, and 580 ℃ for 20 minutes. The largest energy blue shift of 189.1 meV was observed in the window regions at 580 ℃. When the blue shift was 24.7 meV at 480 ℃, the COD power for the window LD was 86.7% higher than the conventional LD.