传统的基于图神经网络的兴趣点模型的研究是通过简单的注意力机制进行权重定义,或仅仅将多种因素简单进行线性组合,缺乏从多角度考虑用户和兴趣点自身的语义信息和交互信息。此外,现有的图神经网络推荐依赖于图结构信息的集中式存储和训...传统的基于图神经网络的兴趣点模型的研究是通过简单的注意力机制进行权重定义,或仅仅将多种因素简单进行线性组合,缺乏从多角度考虑用户和兴趣点自身的语义信息和交互信息。此外,现有的图神经网络推荐依赖于图结构信息的集中式存储和训练,存在隐私泄露风险。为了解决上述问题,提出基于图神经网络的兴趣点推荐的隐私保护框架(privacy of POI recommendations for graph neural networks,PPGNN)。首先,通过引入多特征模式和注意力机制对图结构进行强化,构建强化用户社交关系图模型;其次,通过多场景角度提出兴趣点邻居结点采样算法以及重新设计卷积聚合机制,对异质图使用语义级别注意力机制进行聚合;最后,提出了可变动态梯度的客户端差分隐私算法,达到边优化边反馈的效果。通过在Yelp和Gowalla不同的数据集上进行大量实验,证明该方案具有有效性,弥补了图神经网络推荐因隐私威胁带来的局限性,优于集中式图神经网络推荐方法,同时也优于传统兴趣点推荐方法,并且PPGNN可以更好地克服推荐中的数据稀疏和冷启动问题。展开更多
随着医学技术的进步和大数据时代的到来,在数据发布时如何对患者就诊记录中的敏感信息进行隐私保护成为当前的研究热点。针对医疗大数据在发布过程中隐私保护问题,提出了基于属性效用值排序法AUR-Tree(attribute utility value ranking-...随着医学技术的进步和大数据时代的到来,在数据发布时如何对患者就诊记录中的敏感信息进行隐私保护成为当前的研究热点。针对医疗大数据在发布过程中隐私保护问题,提出了基于属性效用值排序法AUR-Tree(attribute utility value ranking-tree)差分隐私数据发布算法。该算法用属性效用值排序法衡量准标识属性对敏感属性的影响程度,以此作为迭代分割的度量依据,采用基于泛化的自顶向下迭代分割分类树技术,通过类等差法合理地分配隐私预算从而实现在医疗数据发布过程中的隐私保护。实验结果表明:该算法在极大地提高了数据的安全性、有效性和可用性的前提下,还保留了后续数据挖掘的价值。展开更多
文摘传统的基于图神经网络的兴趣点模型的研究是通过简单的注意力机制进行权重定义,或仅仅将多种因素简单进行线性组合,缺乏从多角度考虑用户和兴趣点自身的语义信息和交互信息。此外,现有的图神经网络推荐依赖于图结构信息的集中式存储和训练,存在隐私泄露风险。为了解决上述问题,提出基于图神经网络的兴趣点推荐的隐私保护框架(privacy of POI recommendations for graph neural networks,PPGNN)。首先,通过引入多特征模式和注意力机制对图结构进行强化,构建强化用户社交关系图模型;其次,通过多场景角度提出兴趣点邻居结点采样算法以及重新设计卷积聚合机制,对异质图使用语义级别注意力机制进行聚合;最后,提出了可变动态梯度的客户端差分隐私算法,达到边优化边反馈的效果。通过在Yelp和Gowalla不同的数据集上进行大量实验,证明该方案具有有效性,弥补了图神经网络推荐因隐私威胁带来的局限性,优于集中式图神经网络推荐方法,同时也优于传统兴趣点推荐方法,并且PPGNN可以更好地克服推荐中的数据稀疏和冷启动问题。
文摘随着医学技术的进步和大数据时代的到来,在数据发布时如何对患者就诊记录中的敏感信息进行隐私保护成为当前的研究热点。针对医疗大数据在发布过程中隐私保护问题,提出了基于属性效用值排序法AUR-Tree(attribute utility value ranking-tree)差分隐私数据发布算法。该算法用属性效用值排序法衡量准标识属性对敏感属性的影响程度,以此作为迭代分割的度量依据,采用基于泛化的自顶向下迭代分割分类树技术,通过类等差法合理地分配隐私预算从而实现在医疗数据发布过程中的隐私保护。实验结果表明:该算法在极大地提高了数据的安全性、有效性和可用性的前提下,还保留了后续数据挖掘的价值。