This work investigated the microwave dielectric properties of A-site substitution by rare earth La3+in(Pb0.5Ca0.5)(Fe0.5Ta0.5)O3(PCFT) system.A single perovskite phase was obtained only when the doping content ...This work investigated the microwave dielectric properties of A-site substitution by rare earth La3+in(Pb0.5Ca0.5)(Fe0.5Ta0.5)O3(PCFT) system.A single perovskite phase was obtained only when the doping content was 2%.Suitable La3+ doping improved microwave dielectric performances.Excessive La3+doping caused the formation of secondary phase,which resulted in the decreasing of permittivity εrand quality factor Qfvalues.Especially,when the doping content is 2%-5%,permittivity εrwas above 75 and Qfvalues were 6 902-7 416 GHz.展开更多
The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ ...The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.60578041)the National High Technology Research and Development Program of China (Grant No.715-006-0060)
文摘This work investigated the microwave dielectric properties of A-site substitution by rare earth La3+in(Pb0.5Ca0.5)(Fe0.5Ta0.5)O3(PCFT) system.A single perovskite phase was obtained only when the doping content was 2%.Suitable La3+ doping improved microwave dielectric performances.Excessive La3+doping caused the formation of secondary phase,which resulted in the decreasing of permittivity εrand quality factor Qfvalues.Especially,when the doping content is 2%-5%,permittivity εrwas above 75 and Qfvalues were 6 902-7 416 GHz.
基金Project supported by the National Natural Science Foundation of China (Grant No.60578041)the National High Tech-nology Research and Development Program of China (Grant No.715-006-0060)
文摘The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.