期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于距离尺度学习的新类识别方法
被引量:
4
1
作者
谢茂强
黄亚楼
+2 位作者
殷爱茹
江皞
李栋
《模式识别与人工智能》
EI
CSCD
北大核心
2009年第1期47-52,共6页
在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在...
在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在缺少先验知识的前提下自动识别新类,并较好地解决了样本间类别相似性同样本间距离不一致的问题,为分类器的自适应更新提供了关键技术.在多个数据集上的实验结果表明在客观新类出现后该方法能有效发现新类,可使更新后的分类器保持较高准确度,为实现适应新类的在线分类系统奠定坚实基础.
展开更多
关键词
新类识别
距离尺度学习
自适应分类
原文传递
题名
基于距离尺度学习的新类识别方法
被引量:
4
1
作者
谢茂强
黄亚楼
殷爱茹
江皞
李栋
机构
南开大学软件学院
南开大学信息技术科学学院
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2009年第1期47-52,共6页
基金
国家自然科学基金资助项目(No.60673009)
文摘
在在线分类任务中经常会出现新类别,导致数据分布发生显著变化,使得已有分类器不再适用.如何识别新类以使分类器能适应其出现已成为在线分类亟待解决的问题.本文提出基于距离尺度学习的识别偏离型新类的算法用于解决该问题.该方法能在缺少先验知识的前提下自动识别新类,并较好地解决了样本间类别相似性同样本间距离不一致的问题,为分类器的自适应更新提供了关键技术.在多个数据集上的实验结果表明在客观新类出现后该方法能有效发现新类,可使更新后的分类器保持较高准确度,为实现适应新类的在线分类系统奠定坚实基础.
关键词
新类识别
距离尺度学习
自适应分类
Keywords
New Class Recognition, Distance Metric Learning, Adaptive Classification
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于距离尺度学习的新类识别方法
谢茂强
黄亚楼
殷爱茹
江皞
李栋
《模式识别与人工智能》
EI
CSCD
北大核心
2009
4
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部