电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软...电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软件基础退化模块进行仿真。由于仿真条件简单,难以覆盖工业芯片常见的复杂电磁脉冲环境,器件的可靠性寿命预期值与实际经验值之间相差巨大,导致芯片的稳定性很难得到精准评估。本研究结合期望最大算法和可靠性应力转化理论,在进行可靠性仿真前对复杂电磁脉冲信号进行预处理,降低整体电磁信号的复杂度,提高仿真效率,增强建模的可靠性。系列过程可作为电磁场仿真模块补充嵌入到主流的TCAD仿真软件,提高工业芯片器件可靠性仿真精准度。展开更多
文摘电磁脉冲冲击环境下工业芯片LDMOS(Laterally Diffused Metal Oxide Semiconductor)器件的可靠性仿真通常基于周期性单TLP(Transmission Line Pulse)脉冲信号的参数作为瞬态输入条件,利用商业TCAD(Technology Computer Aided Design)软件基础退化模块进行仿真。由于仿真条件简单,难以覆盖工业芯片常见的复杂电磁脉冲环境,器件的可靠性寿命预期值与实际经验值之间相差巨大,导致芯片的稳定性很难得到精准评估。本研究结合期望最大算法和可靠性应力转化理论,在进行可靠性仿真前对复杂电磁脉冲信号进行预处理,降低整体电磁信号的复杂度,提高仿真效率,增强建模的可靠性。系列过程可作为电磁场仿真模块补充嵌入到主流的TCAD仿真软件,提高工业芯片器件可靠性仿真精准度。