期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于互信息最大化和聚类感知的节点表示学习
1
作者
汤乾
武浩
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第1期15-22,共8页
节点表示学习是研究各类图结构数据的基础.图结构数据具有复杂的结构关系和丰富的节点信息,因此如何融合图结构和节点信息学习高质量的节点表示仍是一个挑战性问题.为此,提出一种基于互信息最大化和聚类感知的节点表示学习模型.首先,对...
节点表示学习是研究各类图结构数据的基础.图结构数据具有复杂的结构关系和丰富的节点信息,因此如何融合图结构和节点信息学习高质量的节点表示仍是一个挑战性问题.为此,提出一种基于互信息最大化和聚类感知的节点表示学习模型.首先,对原始图使用图扩散方法构造扩散图;然后,使用图卷积网络编码两个图到低维特征空间获得节点表示和全局表示;最后,基于互信息最大化原理,最大化一个图的节点表示和另一个图的全局表示间的一致性,反之亦然.同时,将语义相似的节点聚类到同一个簇,并最大化两个图的节点表示间的聚类一致性.在两个引文数据集上的节点分类和节点聚类的实验结果表明,该模型的性能在多项指标上都优于基线方法.以Cora数据集为例,在节点分类任务上,该模型对比基线方法在准确率和F1值指标上分别提高了2.7和0.6个百分点.
展开更多
关键词
节点表示学习
互信息
聚类感知
节点分类
节点聚类
下载PDF
职称材料
题名
基于互信息最大化和聚类感知的节点表示学习
1
作者
汤乾
武浩
机构
云南大学信息学院
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第1期15-22,共8页
基金
国家自然科学基金(61962061,61562090)
云南省中青年学术与技术带头人后备人才项目(202005AC160005)
云南省高层次人才培养支持计划青年拔尖人才专项(YNWR-QNBJ-2019-188)。
文摘
节点表示学习是研究各类图结构数据的基础.图结构数据具有复杂的结构关系和丰富的节点信息,因此如何融合图结构和节点信息学习高质量的节点表示仍是一个挑战性问题.为此,提出一种基于互信息最大化和聚类感知的节点表示学习模型.首先,对原始图使用图扩散方法构造扩散图;然后,使用图卷积网络编码两个图到低维特征空间获得节点表示和全局表示;最后,基于互信息最大化原理,最大化一个图的节点表示和另一个图的全局表示间的一致性,反之亦然.同时,将语义相似的节点聚类到同一个簇,并最大化两个图的节点表示间的聚类一致性.在两个引文数据集上的节点分类和节点聚类的实验结果表明,该模型的性能在多项指标上都优于基线方法.以Cora数据集为例,在节点分类任务上,该模型对比基线方法在准确率和F1值指标上分别提高了2.7和0.6个百分点.
关键词
节点表示学习
互信息
聚类感知
节点分类
节点聚类
Keywords
node representation learning
mutual information
cluster perception
node classification
node clustering
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于互信息最大化和聚类感知的节点表示学习
汤乾
武浩
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部