期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于互信息最大化和聚类感知的节点表示学习
1
作者 汤乾 武浩 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期15-22,共8页
节点表示学习是研究各类图结构数据的基础.图结构数据具有复杂的结构关系和丰富的节点信息,因此如何融合图结构和节点信息学习高质量的节点表示仍是一个挑战性问题.为此,提出一种基于互信息最大化和聚类感知的节点表示学习模型.首先,对... 节点表示学习是研究各类图结构数据的基础.图结构数据具有复杂的结构关系和丰富的节点信息,因此如何融合图结构和节点信息学习高质量的节点表示仍是一个挑战性问题.为此,提出一种基于互信息最大化和聚类感知的节点表示学习模型.首先,对原始图使用图扩散方法构造扩散图;然后,使用图卷积网络编码两个图到低维特征空间获得节点表示和全局表示;最后,基于互信息最大化原理,最大化一个图的节点表示和另一个图的全局表示间的一致性,反之亦然.同时,将语义相似的节点聚类到同一个簇,并最大化两个图的节点表示间的聚类一致性.在两个引文数据集上的节点分类和节点聚类的实验结果表明,该模型的性能在多项指标上都优于基线方法.以Cora数据集为例,在节点分类任务上,该模型对比基线方法在准确率和F1值指标上分别提高了2.7和0.6个百分点. 展开更多
关键词 节点表示学习 互信息 聚类感知 节点分类 节点聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部