-
题名基于深度学习的多分辨显微关联成像系统设计
- 1
-
-
作者
刘禹彤
李妍
金璐
汤化旭
王舜
吴雨聪
冯悦姝
-
机构
长春电子科技学院光电工程学院
清华苏州环境创新研究院
吉林工程技术师范学院量子信息技术交叉学科研究院
吉林省量子信息技术工程实验室
-
出处
《红外与激光工程》
EI
CSCD
北大核心
2023年第4期284-291,共8页
-
基金
吉林省科技发展计划(20210204122YY)
吉林省教育厅科学技术研究项目(JJKH20220189KJ)
光电子器件与系统教育部/广东省重点实验室开放课题(GD202202)。
-
文摘
显微成像技术作为研究细胞和生物组织的主要工具,对生物医学的发展起到了极大的推动作用。生物样本的复杂化和生物医学领域对时间和空间分辨率的多样化需求决定了单一功能生物成像系统应用的局限性。为满足生物医学领域的多样化需求,解决成像质量与成像时间之间的矛盾,设计了一种基于深度学习的多分辨显微关联成像系统。该系统通过对显微镜进行硬件设计改造和软件处理,将深度学习与关联成像技术有效结合,当采样率仅为60%时,成像系统能够较好地恢复图像细节,大幅降低欠采样带来的噪声,同时显著提升系统成像的时间分辨率。另外,为了满足所设计的小型多分辨显微关联成像系统的实际需求,采用基于重参数化思想的超高效轻量超分网络,在资源受限的设备下实现实时高质量成像。所提出的成像系统可以在保证成像质量的同时显著缩短成像时间和减少内存占用。不同类型生物样本和分辨率板的测试结果进一步表明了系统的鲁棒性和抗噪性能,研究结果对生物医学领域具有重要意义。
-
关键词
显微成像
关联成像
深度学习
多分辨成像
-
Keywords
microscopic imaging
correlation imaging
deep learning
multi-resolution imaging
-
分类号
O431.2
[机械工程—光学工程]
-