期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
D^3MOPSO:一种基于用户偏好的元搜索排序聚合演化方法
被引量:
2
1
作者
汤小月
余伟
李石君
《计算机研究与发展》
EI
CSCD
北大核心
2017年第8期1665-1681,共17页
随着网络数据的爆发式增长和用户需求的多元化发展,现有元搜索排序聚合方法在精度和性能上面临着巨大挑战.以满足用户的多重需求和个性化偏好为目标,提出了一种新的元搜索排序聚合算法.通过重新定义多目标粒子群优化算法(multi-objectiv...
随着网络数据的爆发式增长和用户需求的多元化发展,现有元搜索排序聚合方法在精度和性能上面临着巨大挑战.以满足用户的多重需求和个性化偏好为目标,提出了一种新的元搜索排序聚合算法.通过重新定义多目标粒子群优化算法(multi-objective particle swarm optimization,MOPSO)中粒子的属性,调整速度变化因子,改进种群初始化和演化机制,设计新的存档与更新策略以及引导微粒选择策略,提出了一个基于支配分解的离散多目标优化(D^3MOPSO)算法,使其能根据用户的质量需求偏好在大规模离散解空间中快速准确地找出最优解集.在多个数据集上的实验结果表明:当数据规模较小时,D^3MOPSO算法的精度和性能接近机器学习排序聚合方法;在大规模数据环境下,其精度和性能优于机器学习方法以及同类多目标优化方法.
展开更多
关键词
排序聚合
元搜索
用户偏好
多目标优化
离散粒子群优化
下载PDF
职称材料
一种空间上下文感知的提及目标推荐方法
被引量:
5
2
作者
汤小月
周康
王凯
《软件学报》
EI
CSCD
北大核心
2020年第4期1189-1211,共23页
作为一种新兴的社交媒体用户交互服务,提及机制(mention mechanism)正在用户在线交互和网络信息传播方面扮演着重要角色.对用户提及行为的研究能够揭示用户的隐式偏好与其显式行为之间的联系,为信息传播监控、商业智能、个性化推荐等应...
作为一种新兴的社交媒体用户交互服务,提及机制(mention mechanism)正在用户在线交互和网络信息传播方面扮演着重要角色.对用户提及行为的研究能够揭示用户的隐式偏好与其显式行为之间的联系,为信息传播监控、商业智能、个性化推荐等应用提供新的数据支撑.当前,对用户提及机制的探索多集中在其信息传播属性上,缺少从普通用户角度对其用户交互属性的学习.通过对普通用户提及行为的分析和建模构建一个推荐系统,为给定的社交媒体消息生成目标用户推荐.通过对大型真实社交媒体数据集的分析发现,用户的提及行为受其提及活动的语义和空间上下文因素的联合影响.据此,提出一个联合概率生成模型JUMBM(joint user mention behavior model),模拟用户空间关联提及活动的生成过程.通过对用户语义和空间上下文感知的提及行为进行统一建模,JUMBM能够同时发掘用户的移动模式、地理区域依赖的语义兴趣及其对应目标用户的地理聚集模式.此外,提出一种混合剪枝算法,加快推荐系统对在线top-k查询的响应速度.在大型真实数据集上的实验结果表明,所提方法在推荐有效性和推荐效率方面均优于对比方法.
展开更多
关键词
用户提及行为建模
目标用户推荐
空间上下文感知
综合概率模型
社交网络分析
下载PDF
职称材料
题名
D^3MOPSO:一种基于用户偏好的元搜索排序聚合演化方法
被引量:
2
1
作者
汤小月
余伟
李石君
机构
武汉轻工大学数学与计算机学院
武汉大学计算机学院
出处
《计算机研究与发展》
EI
CSCD
北大核心
2017年第8期1665-1681,共17页
基金
国家自然科学基金项目(61502350)
湖北省教育厅科研计划项目(Q-20161702)~~
文摘
随着网络数据的爆发式增长和用户需求的多元化发展,现有元搜索排序聚合方法在精度和性能上面临着巨大挑战.以满足用户的多重需求和个性化偏好为目标,提出了一种新的元搜索排序聚合算法.通过重新定义多目标粒子群优化算法(multi-objective particle swarm optimization,MOPSO)中粒子的属性,调整速度变化因子,改进种群初始化和演化机制,设计新的存档与更新策略以及引导微粒选择策略,提出了一个基于支配分解的离散多目标优化(D^3MOPSO)算法,使其能根据用户的质量需求偏好在大规模离散解空间中快速准确地找出最优解集.在多个数据集上的实验结果表明:当数据规模较小时,D^3MOPSO算法的精度和性能接近机器学习排序聚合方法;在大规模数据环境下,其精度和性能优于机器学习方法以及同类多目标优化方法.
关键词
排序聚合
元搜索
用户偏好
多目标优化
离散粒子群优化
Keywords
rank aggregation
metasearch
user preference
multi-objective optimization
discrete particle swarm optimization
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
一种空间上下文感知的提及目标推荐方法
被引量:
5
2
作者
汤小月
周康
王凯
机构
武汉轻工大学数学与计算机学院
武汉大学计算机学院
出处
《软件学报》
EI
CSCD
北大核心
2020年第4期1189-1211,共23页
基金
国家自然科学基金(61502362,61401319,61179032)
湖北省自然科学基金(2015CFA061,2019CFB250)。
文摘
作为一种新兴的社交媒体用户交互服务,提及机制(mention mechanism)正在用户在线交互和网络信息传播方面扮演着重要角色.对用户提及行为的研究能够揭示用户的隐式偏好与其显式行为之间的联系,为信息传播监控、商业智能、个性化推荐等应用提供新的数据支撑.当前,对用户提及机制的探索多集中在其信息传播属性上,缺少从普通用户角度对其用户交互属性的学习.通过对普通用户提及行为的分析和建模构建一个推荐系统,为给定的社交媒体消息生成目标用户推荐.通过对大型真实社交媒体数据集的分析发现,用户的提及行为受其提及活动的语义和空间上下文因素的联合影响.据此,提出一个联合概率生成模型JUMBM(joint user mention behavior model),模拟用户空间关联提及活动的生成过程.通过对用户语义和空间上下文感知的提及行为进行统一建模,JUMBM能够同时发掘用户的移动模式、地理区域依赖的语义兴趣及其对应目标用户的地理聚集模式.此外,提出一种混合剪枝算法,加快推荐系统对在线top-k查询的响应速度.在大型真实数据集上的实验结果表明,所提方法在推荐有效性和推荐效率方面均优于对比方法.
关键词
用户提及行为建模
目标用户推荐
空间上下文感知
综合概率模型
社交网络分析
Keywords
user mention behavior modeling
target user recommendation
spatial context-aware
joint probabilistic model
social networks analysis
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
D^3MOPSO:一种基于用户偏好的元搜索排序聚合演化方法
汤小月
余伟
李石君
《计算机研究与发展》
EI
CSCD
北大核心
2017
2
下载PDF
职称材料
2
一种空间上下文感知的提及目标推荐方法
汤小月
周康
王凯
《软件学报》
EI
CSCD
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部