期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CEEMDAN-CNN-LSTM模型的上海碳排放权交易价格区间预测研究
1
作者
徐登可
汤朱远洋
沈琳琳
《统计科学与实践》
2024年第7期28-31,40,共5页
碳排放权交易价格是碳排放权交易市场的核心要素,对其准确预测有助于政府科学制定碳市场政策,也有利于企业在碳市场的有效决策以及实现碳减排成本最小化。本文构建CEEMDAN-CNN-LSTM模型,对2014年5月13日至2024年1月23日上海碳排放权交...
碳排放权交易价格是碳排放权交易市场的核心要素,对其准确预测有助于政府科学制定碳市场政策,也有利于企业在碳市场的有效决策以及实现碳减排成本最小化。本文构建CEEMDAN-CNN-LSTM模型,对2014年5月13日至2024年1月23日上海碳排放权交易价格进行区间预测研究。用CEEMDAN方法对中心和半径碳价进行分解,分别得到7个中心本征模态函数(IMFS)和9个半径本征模态函数,后加入与上海碳价相关性较高的特征变量,将分解后的IMFS和特征变量分别放入CNN-LSTM模型进行预测,并与CNN、CNN-LSTM和ARIMAX模型进行比较。预测结果表明:基于考虑宏观经济、气象气候、能源价格、国际汇率的多变量输入模型,CEEMDAN-CNN-LSTM方法的区间预测误差是最小的,具有明显的预测优势。
展开更多
关键词
碳排放权交易价格
区间数据
CEEMDAN分解
CNN-LSTM神经网络预测
下载PDF
职称材料
题名
基于CEEMDAN-CNN-LSTM模型的上海碳排放权交易价格区间预测研究
1
作者
徐登可
汤朱远洋
沈琳琳
机构
杭州电子科技大学经济学院
出处
《统计科学与实践》
2024年第7期28-31,40,共5页
基金
国家社会科学基金项目“区间数据的贝叶斯建模方法及其在碳交易预测中的应用研究”(项目编号:23BTJ069)。
文摘
碳排放权交易价格是碳排放权交易市场的核心要素,对其准确预测有助于政府科学制定碳市场政策,也有利于企业在碳市场的有效决策以及实现碳减排成本最小化。本文构建CEEMDAN-CNN-LSTM模型,对2014年5月13日至2024年1月23日上海碳排放权交易价格进行区间预测研究。用CEEMDAN方法对中心和半径碳价进行分解,分别得到7个中心本征模态函数(IMFS)和9个半径本征模态函数,后加入与上海碳价相关性较高的特征变量,将分解后的IMFS和特征变量分别放入CNN-LSTM模型进行预测,并与CNN、CNN-LSTM和ARIMAX模型进行比较。预测结果表明:基于考虑宏观经济、气象气候、能源价格、国际汇率的多变量输入模型,CEEMDAN-CNN-LSTM方法的区间预测误差是最小的,具有明显的预测优势。
关键词
碳排放权交易价格
区间数据
CEEMDAN分解
CNN-LSTM神经网络预测
分类号
X196 [环境科学与工程—环境科学]
F832.5 [经济管理—金融学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CEEMDAN-CNN-LSTM模型的上海碳排放权交易价格区间预测研究
徐登可
汤朱远洋
沈琳琳
《统计科学与实践》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部