[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were ...[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.展开更多
基金Supported by Science and Technology Research Project of Jiangxi Education Department(GJJ14289)Science and Technology Research Project of Environmental Protection Department of Jiangxi Province(JXHBKJ2013-4)Special Fund for Visiting Scholars from the Development Program for Middle-aged and Young Teachers in Colleges of Jiangxi Province(GJGH[2014]N0.15)
文摘[Objective] This study aimed to investigate the adsorption and desorption characteristics of cadmium and lead in typical paddy soils of Jiangxi Province. [Method] Gleyed paddy soil and waterloggogenic paddy soil were collected from Jiangxi Province and used as experimental materials to investigate single and com- petitive adsorption and desorption behaviors of cadmium and lead by batch equilib- rium method. The environmental risk of the presence of cadmium and lead in paddy soils was assessed using distribution coefficients. [Result] Under equal ratio condi- tions, the adsorption capacity of lead by two types of paddy soils was higher than that of cadmium, and the adsorption rate in waterloggogenic paddy soil was higher than that in gleyed paddy soil. The desorption capacity of cadmium by two types of paddy soils was higher than that of lead, and the desorption rate in gleyed paddy soil was higher than that in waterloggogenic paddy soil. Under competitive condi- tions, the adsorption capacity of cadmium and lead by paddy soils was significantly reduced compared with single ion system, while the desorption rate was remarkably improved. The potential environmental risk of cadmium contamination was greater than that of lead in paddy soils. Moreover, environmental risks of cadmium and lead were reduced with the increase of pH, which increased significantly under the coex- istence state. [Conclusion] In the coexistence of cadmium and lead, cadmium con- tamination should be controlled and avoided compared with lead contamination in paddy soils.