为应对近年来国内风电渗透率不断增加、大量清洁能源并入电网给日前电价预测带来的挑战,提高高比例风电接入情况下电力市场短期电价预测精度,将高比例风电情况下的风电出力与负荷数据进行融合得到了一项改进的输入特征变量,代表风电与...为应对近年来国内风电渗透率不断增加、大量清洁能源并入电网给日前电价预测带来的挑战,提高高比例风电接入情况下电力市场短期电价预测精度,将高比例风电情况下的风电出力与负荷数据进行融合得到了一项改进的输入特征变量,代表风电与负荷共同对电价的影响程度。采用最大信息系数法分析各特征变量与电价之间的相关性,并结合长短期记忆神经网络(long-short term memory,LSTM)与注意力机制(Attention)的特点构建了LSTM-Attetion预测模型,然后对不同输入条件下的预测结果进行对比分析,数据结果显示,引入该输入特征变量后模型的预测精度都有明显提升。经过进一步算例实验后表明,所提出的特征变量相比风荷比而言,能够有效提高高比例风电情况下电价预测精度,适用于许多经典算法。展开更多
文摘为应对近年来国内风电渗透率不断增加、大量清洁能源并入电网给日前电价预测带来的挑战,提高高比例风电接入情况下电力市场短期电价预测精度,将高比例风电情况下的风电出力与负荷数据进行融合得到了一项改进的输入特征变量,代表风电与负荷共同对电价的影响程度。采用最大信息系数法分析各特征变量与电价之间的相关性,并结合长短期记忆神经网络(long-short term memory,LSTM)与注意力机制(Attention)的特点构建了LSTM-Attetion预测模型,然后对不同输入条件下的预测结果进行对比分析,数据结果显示,引入该输入特征变量后模型的预测精度都有明显提升。经过进一步算例实验后表明,所提出的特征变量相比风荷比而言,能够有效提高高比例风电情况下电价预测精度,适用于许多经典算法。