为了实现遥感图像的超分辨率,解决目前超分辨率算法存在退化模型不符合遥感图像降质特性的问题,提出了一种基于生成对抗网络的遥感图像超分辨率方法。针对遥感图像成像的复杂性,建立新的遥感图像降质模型,有效改善了因图像先验和映射关...为了实现遥感图像的超分辨率,解决目前超分辨率算法存在退化模型不符合遥感图像降质特性的问题,提出了一种基于生成对抗网络的遥感图像超分辨率方法。针对遥感图像成像的复杂性,建立新的遥感图像降质模型,有效改善了因图像先验和映射关系不符而无法有效提高网络性能的问题;同时将混合注意力机制引入残差网络,以增强生成器对于遥感图像的纹理细节恢复能力,并且改用U-Net结构判别器,使判别器满足更高的对抗网络判别需求。最后在UCAS-AOD数据集上验证并与四种主流方法对比,改进的网络在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上较次好方法分别提升2.2923dB/11.88%,证明所提算法的先进性。展开更多
文摘为了实现遥感图像的超分辨率,解决目前超分辨率算法存在退化模型不符合遥感图像降质特性的问题,提出了一种基于生成对抗网络的遥感图像超分辨率方法。针对遥感图像成像的复杂性,建立新的遥感图像降质模型,有效改善了因图像先验和映射关系不符而无法有效提高网络性能的问题;同时将混合注意力机制引入残差网络,以增强生成器对于遥感图像的纹理细节恢复能力,并且改用U-Net结构判别器,使判别器满足更高的对抗网络判别需求。最后在UCAS-AOD数据集上验证并与四种主流方法对比,改进的网络在峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)上较次好方法分别提升2.2923dB/11.88%,证明所提算法的先进性。