期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多特征软概率级联的场景级土地利用分类方法 被引量:2
1
作者 刘越岩 汪林宇 +1 位作者 张斌 门计林 《农业工程学报》 EI CAS CSCD 北大核心 2016年第22期266-272,共7页
为实现高分辨率遥感影像特征的有效组织优化,以及提高特征的可判别性,该文提出了基于中层特征学习的多特征软概率级联模型实现场景级土地利用分类。首先,提取影像的密集尺度不变转换特征(dense scale invariant feature transform,DSIFT... 为实现高分辨率遥感影像特征的有效组织优化,以及提高特征的可判别性,该文提出了基于中层特征学习的多特征软概率级联模型实现场景级土地利用分类。首先,提取影像的密集尺度不变转换特征(dense scale invariant feature transform,DSIFT)、光谱特征(spectral feature,SF)以及局部二值模式特征(local binary pattern,LBP)作为低层特征;然后由局部约束线性编码(locality-constraint linear coding,LLC)分别对DSIFT特征、SF特征以及LBP特征进行稀疏编码得到3种低层特征的稀疏系数,并结合空间金字塔匹配(spatial pyramidal matching,SPM)模型、最大空间平滑方法对稀疏系数进行优化,获得影像的中层特征表达;最后,利用SVM分类器,分别对3种低层特征的中层特征表达进行分类,并分别计算3种低层特征分类的软概率,级联3种特征的软概率将其作为图像最终的特征表达,利用SVM分类器进行第2次分类得到最终分类结果。采用UC-Merced Land Use数据集对该方法进行了验证,试验结果表明:1)该方法总体精度达到88.6%,相较于传统稀疏编码空间金字塔匹配(sparse coding and spatial pyramidal matching,Sc SPM),局部约束线性编码(locality-constraint linear coding,LLC)等分类方法,总体精度分别提高了12.7%,9.9%;2)相较于提取单一低层特征的场景分类方法,该文算法更有利于实现对影像中复杂且不易区分的地物的表达,可有效提高土地利用分类精度。 展开更多
关键词 遥感 分类 土地利用 高分辨率 局部约束线性编码 支持向量机
下载PDF
基于多特征软概率级联的土地利用/土地覆盖分类 被引量:1
2
作者 张斌 刘越岩 汪林宇 《资源科学》 CSSCI CSCD 北大核心 2017年第3期557-565,共9页
为实现高分辨率遥感影像低层特征的有效组织与优化,提高特征的可判别性,重点研究了基于稀疏编码的中层特征学习、基于支持向量机(Support Vector Machine,SVM)的分类技术,提出了基于软概率级联中层特征学习模型实现土地利用/土地覆盖(La... 为实现高分辨率遥感影像低层特征的有效组织与优化,提高特征的可判别性,重点研究了基于稀疏编码的中层特征学习、基于支持向量机(Support Vector Machine,SVM)的分类技术,提出了基于软概率级联中层特征学习模型实现土地利用/土地覆盖(Land Use and Land Cover,LULC)分类。首先,提取影像的灰度共生矩阵(Graylevel Co-occurrence Matrix,GLCM)、光谱特征、密集尺度不变特征转换(Dense Scale Invariant Feature Transform,DSIFT)作为低层特征;然后由稀疏编码分别对GLCM、DSIFT和光谱特征进行稀疏编码,并结合最大平滑方法对稀疏系数进行优化,获得影像的中层特征,并通过SVM分类器分别计算LULC类别软概率,对其级联获得影像的特征表达;最后,利用SVM分类器再次分类获得LULC分类结果。选用武汉市远城区农村居民点作为实验样区,对该方法进行了验证,实验结果表明,该方法总体精度达到88%左右;相较于提取单一低层特征的分类方法,本文算法可有效提高LULC分类精度。 展开更多
关键词 高分辨率 遥感影像 图像分类 土地利用/土地覆盖 稀疏编码 支持向量机
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部