期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于文本分类的Fisher Score快速多标记特征选择算法 被引量:8
1
作者 汪正凯 沈东升 王晨曦 《计算机工程》 CAS CSCD 北大核心 2022年第2期113-124,共12页
Fisher Score(FS)是一种快速高效的评价特征分类能力的指标,但传统的FS指标既无法直接应用于多标记学习,也不能有效处理样本极值导致的类中心与实际类中心的误差。提出一种结合中心偏移和多标记集合关联性的FS多标记特征选择算法,找出... Fisher Score(FS)是一种快速高效的评价特征分类能力的指标,但传统的FS指标既无法直接应用于多标记学习,也不能有效处理样本极值导致的类中心与实际类中心的误差。提出一种结合中心偏移和多标记集合关联性的FS多标记特征选择算法,找出不同标记下每类样本的极值点,以极值点到该类样本的中心距离乘以半径系数筛选新的样本,从而获得分布更为密集的样本集合,以此计算特征的FS得分,通过整体遍历全体样本的标记集合中的每个标记,并在遍历过程中针对具有更多标记数量的样本自适应地赋以标记权值,得到整体特征的平均FS得分,以特征的FS得分进行排序过滤出目标子集实现特征选择目标。在8个公开的多标记文本数据集上进行参数分析及5种指标性能比较,结果表明,该算法具有一定的有效性和鲁棒性,在多数指标上优于MLNB、MLRF、PMU、MLACO等多标记特征选择算法。 展开更多
关键词 多标记分类 特征选择 Fisher Score指标 距离度量 类间散度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部