期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的煤炭运载车辆识别
被引量:
5
1
作者
马传香
汪炀杰
王旭
《计算机科学》
CSCD
北大核心
2020年第S02期219-223,共5页
为了杜绝或避免矿产品资源如煤炭、砂石矿等行业因不开票而导致偷税漏税现象的发生,利用深度卷积神经网络自动识别空车重车是一种有效途径。本文在AlexNet模型基础上,针对空车重车图像的差异性,提出5种改进思路,最终得到一种基于maxout+...
为了杜绝或避免矿产品资源如煤炭、砂石矿等行业因不开票而导致偷税漏税现象的发生,利用深度卷积神经网络自动识别空车重车是一种有效途径。本文在AlexNet模型基础上,针对空车重车图像的差异性,提出5种改进思路,最终得到一种基于maxout+dropout的6层卷积神经网络的结构。对34220张空车重车图片的测试结果表明,模型在准确度、敏感度、特异性、精度等方面都取得了良好的效果。此外,模型还具有高度的鲁棒性,可以成功识别大量不同角度和不同场景的空车重车图像。
展开更多
关键词
空车重车识别
深度学习
卷积神经网络
AlexNet
maxout
下载PDF
职称材料
题名
基于卷积神经网络的煤炭运载车辆识别
被引量:
5
1
作者
马传香
汪炀杰
王旭
机构
湖北大学计算机与信息工程学院
湖北省教育信息化工程研究中心
出处
《计算机科学》
CSCD
北大核心
2020年第S02期219-223,共5页
基金
湖北省自然科学基金(2019CFB757)。
文摘
为了杜绝或避免矿产品资源如煤炭、砂石矿等行业因不开票而导致偷税漏税现象的发生,利用深度卷积神经网络自动识别空车重车是一种有效途径。本文在AlexNet模型基础上,针对空车重车图像的差异性,提出5种改进思路,最终得到一种基于maxout+dropout的6层卷积神经网络的结构。对34220张空车重车图片的测试结果表明,模型在准确度、敏感度、特异性、精度等方面都取得了良好的效果。此外,模型还具有高度的鲁棒性,可以成功识别大量不同角度和不同场景的空车重车图像。
关键词
空车重车识别
深度学习
卷积神经网络
AlexNet
maxout
Keywords
Empty car and loaded car identification
Deep learning
CNN
AlexNet
maxout
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的煤炭运载车辆识别
马传香
汪炀杰
王旭
《计算机科学》
CSCD
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部