期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度学习的患者麻醉复苏过程中的头部运动幅度分类方法
1
作者 吴筝 程志友 +3 位作者 汪真天 汪传建 王胜 许辉 《计算机应用》 CSCD 北大核心 2024年第7期2258-2263,共6页
头部姿态估计在很多领域都有广泛研究,然而在医学领域,利用头部姿态估计去监测麻醉恢复室(PACU)中患者复苏的研究很少。现有的从单个图像中学习用于头部姿态估计的细粒度结构聚合网络(FSA-Net)存在收敛效果差、参数过拟合的问题。针对... 头部姿态估计在很多领域都有广泛研究,然而在医学领域,利用头部姿态估计去监测麻醉恢复室(PACU)中患者复苏的研究很少。现有的从单个图像中学习用于头部姿态估计的细粒度结构聚合网络(FSA-Net)存在收敛效果差、参数过拟合的问题。针对以上问题,利用300W-LP、AFLW2000和BIWI共3个公开数据集,对患者麻醉复苏过程中的头部运动进行监测,基于头部姿态估计提出一种患者头部运动幅度分类方法。首先,将FSA-Net其中一个stream的激活函数线性整流单元(ReLU)替换为带有泄漏修正线性单元(LeakyReLU),从而优化模型的收敛效果,同时用AdamW(Adam Weight decay optimizer)优化器替换Adam优化器,解决参数过拟合问题。其次,对患者麻醉复苏中头部运动幅度进行分类,分为小幅度、中幅度以及大幅度运动。最后,利用PHP(Hypertext Preprocessor)、Echarts(EnterpriseCharts)以及PostgreSQL实现数据可视化,绘制患者头部运动实时监测图。实验结果表明,在AFLW2000数据集和BIWI数据集上,改进的FSA-Net的平均绝对误差比原FSA-Net的平均绝对误差分别减小了0.334°和0.243°。改进模型在麻醉复苏检测中具有实际效果,能够辅助医护人员对患者进行麻醉复苏判定。 展开更多
关键词 深度学习 麻醉复苏 头部姿态估计 头部定位 实时监测图
下载PDF
基于改进单点多盒检测器的麻醉复苏目标检测方法
2
作者 罗荣昊 程志友 +2 位作者 汪传建 刘思乾 汪真天 《计算机应用》 CSCD 北大核心 2023年第12期3941-3946,共6页
麻醉复苏目标检测模型常被用于帮助医护人员检测麻醉病人的复苏。病人复苏时面部动作的目标较小且幅度不明显,而现有的单点多盒检测器(SSD)难以准确实时地检测病人的面部微动作特征。针对原有模型检测速度低、容易出现漏检的问题,提出... 麻醉复苏目标检测模型常被用于帮助医护人员检测麻醉病人的复苏。病人复苏时面部动作的目标较小且幅度不明显,而现有的单点多盒检测器(SSD)难以准确实时地检测病人的面部微动作特征。针对原有模型检测速度低、容易出现漏检的问题,提出一种基于改进SSD的麻醉复苏目标检测方法。首先,将原始SSD的主干网络VGG(Visual Geometry Group)16更换为轻量级的主干网络MobileNetV2,并把标准卷积替换成深度可分离卷积;同时,通过对病人照片的特征提取采用先升维再降维的计算方式减少计算量,从而提高模型的检测速度;其次,将SSD提取的不同尺度特征层中融入坐标注意力(CA)机制,并通过对通道和位置信息加权的方式提升特征图提取关键信息的能力,优化网络的定位分类表现;最后,闭眼数据集CEW(Closed Eyes in the Wild)、自然标记人脸数据集LFW(Labeled Faces in the Wild)和医院麻醉病患面部数据集HAPF(Hospital Anesthesia Patient Facial)这3个数据集上进行对比实验。实验结果表明,所提模型的平均精度均值(mAP)达到了95.23%,检测照片的速度为每秒24帧,相较于原始SSD模型的mAP提升了1.39个百分点,检测速度提升了140%。因此,所提模型在麻醉复苏检测中具有实时准确检测的效果,能够辅助医护人员进行苏醒判定。 展开更多
关键词 麻醉复苏 面部特征识别 单点多盒检测器 MobileNetV2 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部