期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SSA-VMD-INGO-RF的短期风电功率预测
1
作者 汪繁荣 梅涛 +2 位作者 张旭东 汪筠涵 肖悦 《现代电子技术》 北大核心 2024年第24期88-96,共9页
为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系... 为解决风电功率输出的不确定性、弱化电网波动以及电网的提质增效等问题,提出一种基于变分模态分解(VMD)、Piecewise混沌映射、北方苍鹰优化(NGO)算法和随机森林(RF)的组合模型。该模型采用麻雀搜索算法(SSA)对VMD核心参数(K值和惩罚系数α)进行寻优,通过SSA-VMD将原始功率序列分解为多个有限带宽的特征模态分量,以降低原始数据的复杂度和非平稳性对预测精度的影响;然后,构建模态分量并在改进的北方苍鹰算法优化随机森林中进行预测;最后,将各分量预测结果叠加,得到最终预测值。以内蒙古某风电场的实测数据为研究对象,将所提组合模型与另外6种模型进行比较。结果表明,所设计模型预测结果平均绝对百分比误差(MAPE)为1.734%,均方根误差为0.068 MW,R2为0.992,证明了该模型的有效性。 展开更多
关键词 短期风电功率预测 北方苍鹰算法 Piecewise混沌映射 随机森林 变分模态分解 麻雀搜索算法
下载PDF
基于机器学习的有色金属冶炼工序识别
2
作者 汪繁荣 方祖春 +1 位作者 刘宇航 汪筠涵 《电子测量技术》 北大核心 2022年第23期181-186,共6页
为实现生产工序的准确识别,提出基于机器学习的工序识别模型,分别选取时间卷积网络、长短期记忆网络、支持向量机构建工序识别模型,并结合某钛金属冶炼企业生产能耗数据对模型进行测试验证。首先对历史功率及工序数据进行预处理,然后根... 为实现生产工序的准确识别,提出基于机器学习的工序识别模型,分别选取时间卷积网络、长短期记忆网络、支持向量机构建工序识别模型,并结合某钛金属冶炼企业生产能耗数据对模型进行测试验证。首先对历史功率及工序数据进行预处理,然后根据生产特征构造用于模型训练及测试数据集,最后结合数据集对模型进行训练和测试。结果表明基于时间卷积网络的识别模型具有较高的工序识别准确率,针对测试集的工序识别准确率达96.94%。 展开更多
关键词 机器学习 时间卷积网络 长短期记忆网络 支持向量机 工序识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部