心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机...心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。展开更多
文摘心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。
文摘针对复杂因果句实体密度高、句式冗长等特点导致的外部信息不足和信息传递遗忘问题,提出一种基于提示增强与双图注意力网络(BiGAT)的复杂因果关系抽取模型PE-BiGAT(PromptEnhancementandBi-Graph Attention Network)。首先,抽取句子中的结果实体并与提示学习模板组成提示信息,再通过外部知识库增强提示信息;其次,将提示信息输入BiGAT,同时结合关注层与句法和语义依存图,并利用双仿射注意力机制缓解特征重叠的情况,增强模型对关系特征的感知能力;最后,用分类器迭代预测句子中的所有因果实体,并通过评分函数分析句子中所有的因果对。在SemEval-2010 task 8和AltLex数据集上的实验结果表明,与RPA-GCN(Relationship Position and Attention-Graph Convolutional Network)相比,所提模型的F1值提高了1.65个百分点,其中在链式因果和多因果句中分别提高了2.16和4.77个百分点,验证了所提模型在处理复杂因果句时更具优势。