针对水下鱼群图像对比度低、鱼群尺寸不一致以及双目图像拼接出现的伪影问题,通过改进SSD(single shot MultiBox detector)算法提高图像拼接精度,实现不同尺寸鱼群快速准确检测。借助卷积层重叠相加法融合多个卷积特征,增强各个特征层...针对水下鱼群图像对比度低、鱼群尺寸不一致以及双目图像拼接出现的伪影问题,通过改进SSD(single shot MultiBox detector)算法提高图像拼接精度,实现不同尺寸鱼群快速准确检测。借助卷积层重叠相加法融合多个卷积特征,增强各个特征层的特征强度;构建特征金字塔模型,实现低卷积层的高分辨率特征与高卷积层的语义特征的融合,提高水下低对比度图像中小目标鱼群的检测精度;利用两个相同的卷积模型进行特征匹配,依据反向传播机制将第六层匹配特征逐级映射到第四层,提高特征匹配精度。在Labeled fish in the wild数据集上对本文算法进行验证,对小目标鱼群的检测精度在90%以上。展开更多
鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学...鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学习方法相结合,提出了一种基于YOLO算法的端到端鱼群检测方法,通过提取整张图像的特征,利用卷积运算与非极大值抑制处理后直接估计出该图像内各目标位置信息,处理速度大幅度提升。同时,针对光线较暗的水下场景,算法依然能够实现场景中鱼群的检测定位。在Labeled Fishes in the Wild图像数据集上验证了本算法,可以达到30帧/秒的处理速度,对实时视频中鱼群的检测精度能够达到90%以上。展开更多
文摘针对水下鱼群图像对比度低、鱼群尺寸不一致以及双目图像拼接出现的伪影问题,通过改进SSD(single shot MultiBox detector)算法提高图像拼接精度,实现不同尺寸鱼群快速准确检测。借助卷积层重叠相加法融合多个卷积特征,增强各个特征层的特征强度;构建特征金字塔模型,实现低卷积层的高分辨率特征与高卷积层的语义特征的融合,提高水下低对比度图像中小目标鱼群的检测精度;利用两个相同的卷积模型进行特征匹配,依据反向传播机制将第六层匹配特征逐级映射到第四层,提高特征匹配精度。在Labeled fish in the wild数据集上对本文算法进行验证,对小目标鱼群的检测精度在90%以上。
文摘鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学习方法相结合,提出了一种基于YOLO算法的端到端鱼群检测方法,通过提取整张图像的特征,利用卷积运算与非极大值抑制处理后直接估计出该图像内各目标位置信息,处理速度大幅度提升。同时,针对光线较暗的水下场景,算法依然能够实现场景中鱼群的检测定位。在Labeled Fishes in the Wild图像数据集上验证了本算法,可以达到30帧/秒的处理速度,对实时视频中鱼群的检测精度能够达到90%以上。
文摘由于部分鱼群目标尺寸过小、水下光照不足等原因,这导致漏检问题很难得到有效地解决。在现有基于深度卷积神经网络的目标检测算法(Single Shot MultiBox Detector,SSD)基础上,提出了一种基于特征金字塔的SSD网络模型(FP-SSD)。利用SSD网络对输入的图像进行特征提取和目标分类;同时利用特征金字塔算法提取各个卷积层产生的特征信息,将低卷积层的高分辨率特征与高卷积层的语义特征进行融合,提升各个卷积层语义特征表达能力,增强低对比度目标特征信息。在标准数据集Labeled Fishes in the Wild上验证了所提算法。上述方法可以达到22FPS的处理速度,并取得93%的检测精度,对包含大量小目标鱼群的查全率超过72%。