情感识别在人机交互中具有重要意义,为了提高情感识别准确率,将语音与文本特征融合。语音特征采用了声学特征和韵律特征,文本特征采用了基于情感词典的词袋特征(Bag-of-words,BoW)和N-gram模型。将语音与文本特征分别进行特征层融合与...情感识别在人机交互中具有重要意义,为了提高情感识别准确率,将语音与文本特征融合。语音特征采用了声学特征和韵律特征,文本特征采用了基于情感词典的词袋特征(Bag-of-words,BoW)和N-gram模型。将语音与文本特征分别进行特征层融合与决策层融合,比较它们在IEMOCAP四类情感识别的效果。实验表明,语音与文本特征融合比单一特征在情感识别中表现更好;决策层融合比在特征层融合识别效果好。且基于卷积神经网络(Convolutional neural network,CNN)分类器,语音与文本特征在决策层融合中不加权平均召回率(Unweighted average recall,UAR)达到了68.98%,超过了此前在IEMOCAP数据集上的最好结果。展开更多
文摘情感识别在人机交互中具有重要意义,为了提高情感识别准确率,将语音与文本特征融合。语音特征采用了声学特征和韵律特征,文本特征采用了基于情感词典的词袋特征(Bag-of-words,BoW)和N-gram模型。将语音与文本特征分别进行特征层融合与决策层融合,比较它们在IEMOCAP四类情感识别的效果。实验表明,语音与文本特征融合比单一特征在情感识别中表现更好;决策层融合比在特征层融合识别效果好。且基于卷积神经网络(Convolutional neural network,CNN)分类器,语音与文本特征在决策层融合中不加权平均召回率(Unweighted average recall,UAR)达到了68.98%,超过了此前在IEMOCAP数据集上的最好结果。