该文设计和制作了一款单片集成硅锗异质结双极晶体管(SiGe HBT)低噪声放大器(LNA)。由于放大器采用复合型电阻负反馈结构,所以可灵活调整不同反馈电阻,同时获得合适的偏置、良好的端口匹配和低的噪声系数。基于0.35μm Si CMOS平面工艺...该文设计和制作了一款单片集成硅锗异质结双极晶体管(SiGe HBT)低噪声放大器(LNA)。由于放大器采用复合型电阻负反馈结构,所以可灵活调整不同反馈电阻,同时获得合适的偏置、良好的端口匹配和低的噪声系数。基于0.35μm Si CMOS平面工艺制定了放大器单芯片集成的工艺流程。为了进一步降低放大器的噪声系数,在制作放大器中SiGe器件时,采用钛硅合金(TiSi2)来减小晶体管基极电阻。由于没有使用占片面积大的螺旋电感,最终研制出的SiGe HBT LNA芯片面积仅为0.282mm2。测试结果表明,在工作频带0.2-1.2GHz内,LNA噪声系数低至2.5dB,增益高达26.7dB,输入输出端口反射系数分别小于-7.4dB和-10dB。展开更多
A multi-finger power SiGe heterojunction bipolar transistor (HBT) with non-uniform finger spacing was fabricated to improve thermal stability. Experimental results show that the peak temperature is reduced by 22K co...A multi-finger power SiGe heterojunction bipolar transistor (HBT) with non-uniform finger spacing was fabricated to improve thermal stability. Experimental results show that the peak temperature is reduced by 22K compared with that of an HBT with uniform finger spacing in the same operating conditions. The temperature profile across the device can be improved at different biases for the same HBT with non-uniform finger spacing. Because of the decrease in peak temperature and the improvement of temperature profile, the power SiGe HBT with non-uniform spacing can operate at higher bias and hence has higher power handling capability.展开更多
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emi...A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions.展开更多
文摘A multi-finger power SiGe heterojunction bipolar transistor (HBT) with non-uniform finger spacing was fabricated to improve thermal stability. Experimental results show that the peak temperature is reduced by 22K compared with that of an HBT with uniform finger spacing in the same operating conditions. The temperature profile across the device can be improved at different biases for the same HBT with non-uniform finger spacing. Because of the decrease in peak temperature and the improvement of temperature profile, the power SiGe HBT with non-uniform spacing can operate at higher bias and hence has higher power handling capability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60776051,61006059and61006044)the Beijing Municipal Natural Science Foundation,China(Grant No.4082007)the Beijing Municipal Education Committee,China(Grant Nos.KM200710005015and KM200910005001)
文摘A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions.