采用水热合成法制备了一种三维花状SnO2微米材料,并以多巴胺作为碳源在其表面包覆一层氮掺杂碳层(SnO2@NC)。作为锂离子电池负极材料,SnO2@NC相比于SnO2表现出更为优异的电化学性能。实验数据显示:SnO2@NC在1 A·g−1电流密度下循环...采用水热合成法制备了一种三维花状SnO2微米材料,并以多巴胺作为碳源在其表面包覆一层氮掺杂碳层(SnO2@NC)。作为锂离子电池负极材料,SnO2@NC相比于SnO2表现出更为优异的电化学性能。实验数据显示:SnO2@NC在1 A·g−1电流密度下循环500圈仍然保持430.9 mA·h·g−1的可逆比容量,倍率性能在5 A·g−1电流密度下具有566.9 mA·h·g−1的高放电容量。其优异的电化学性能得益于外部包覆的碳层缓解了SnO2充放电过程中的体积膨胀,以及氮掺杂碳层加快了材料电子/离子传输速率。A three-dimensional flower-like SnO2 micromaterial was prepared by hydrothermal synthesis and coated with a nitrogen-doped carbon layer (SnO2@NC) using dopamine as a carbon source. As an anode material for lithium-ion batteries, SnO2@NC exhibits superior electrochemical properties compared with SnO2. The experimental data show that SnO2@NC maintains a reversible specific capacity of 430.9 mA·h·g−1 after 500 cycles at a current density of 1 A·g−1, and a high discharge capacity of 566.9 mA·h·g−1 at a current density of 5 A·g-1 for multiplication performance. The excellent electrochemical performance is attributed to the externally coated carbon layer that mitigates the volume expansion of SnO2 during charging and discharging, as well as the nitrogen-doped carbon layer that accelerates the electron-ion transport rate of the material.展开更多
文摘采用水热合成法制备了一种三维花状SnO2微米材料,并以多巴胺作为碳源在其表面包覆一层氮掺杂碳层(SnO2@NC)。作为锂离子电池负极材料,SnO2@NC相比于SnO2表现出更为优异的电化学性能。实验数据显示:SnO2@NC在1 A·g−1电流密度下循环500圈仍然保持430.9 mA·h·g−1的可逆比容量,倍率性能在5 A·g−1电流密度下具有566.9 mA·h·g−1的高放电容量。其优异的电化学性能得益于外部包覆的碳层缓解了SnO2充放电过程中的体积膨胀,以及氮掺杂碳层加快了材料电子/离子传输速率。A three-dimensional flower-like SnO2 micromaterial was prepared by hydrothermal synthesis and coated with a nitrogen-doped carbon layer (SnO2@NC) using dopamine as a carbon source. As an anode material for lithium-ion batteries, SnO2@NC exhibits superior electrochemical properties compared with SnO2. The experimental data show that SnO2@NC maintains a reversible specific capacity of 430.9 mA·h·g−1 after 500 cycles at a current density of 1 A·g−1, and a high discharge capacity of 566.9 mA·h·g−1 at a current density of 5 A·g-1 for multiplication performance. The excellent electrochemical performance is attributed to the externally coated carbon layer that mitigates the volume expansion of SnO2 during charging and discharging, as well as the nitrogen-doped carbon layer that accelerates the electron-ion transport rate of the material.