通过简单、易于工业化的重结晶方法制备了高纯1-甲基-1-乙基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(P12TFSI)塑晶化合物.在此化合物中加入30%(摩尔分数,x)双(氟磺酰)亚胺锂(Li FSI)后,得到P12TFSI/Li FSI塑晶基离子液体.采用循环伏安法、恒电...通过简单、易于工业化的重结晶方法制备了高纯1-甲基-1-乙基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(P12TFSI)塑晶化合物.在此化合物中加入30%(摩尔分数,x)双(氟磺酰)亚胺锂(Li FSI)后,得到P12TFSI/Li FSI塑晶基离子液体.采用循环伏安法、恒电压极化法及恒电流充放电法等电化学方法考察了该离子液体的电化学窗口、铝箔集流体的腐蚀性及电池性能.结果表明,该离子液体电解质具有5.00 V的电化学窗口,室温离子电导率达到0.92 m Scm-1,且不腐蚀Al集流体.以该塑晶离子液体作为电解液组装的实验电池Li Co O2/Li表现出良好的充放电特性及循环性能,在较低倍率下能够和使用碳酸酯类电解液组装的实验电池的性能相媲美.在4.50 V高电压下,循环20周后,容量仍能保持在175 m Ahg-1,容量保持率为95.1%.这些结果说明该离子液体在高性能锂二次电池中具有良好的应用前景.展开更多
文摘通过简单、易于工业化的重结晶方法制备了高纯1-甲基-1-乙基吡咯烷鎓双(三氟甲基磺酰)亚胺盐(P12TFSI)塑晶化合物.在此化合物中加入30%(摩尔分数,x)双(氟磺酰)亚胺锂(Li FSI)后,得到P12TFSI/Li FSI塑晶基离子液体.采用循环伏安法、恒电压极化法及恒电流充放电法等电化学方法考察了该离子液体的电化学窗口、铝箔集流体的腐蚀性及电池性能.结果表明,该离子液体电解质具有5.00 V的电化学窗口,室温离子电导率达到0.92 m Scm-1,且不腐蚀Al集流体.以该塑晶离子液体作为电解液组装的实验电池Li Co O2/Li表现出良好的充放电特性及循环性能,在较低倍率下能够和使用碳酸酯类电解液组装的实验电池的性能相媲美.在4.50 V高电压下,循环20周后,容量仍能保持在175 m Ahg-1,容量保持率为95.1%.这些结果说明该离子液体在高性能锂二次电池中具有良好的应用前景.