电池储能在当前能源结构中有着至关重要的作用,其荷电状态(state of charge,SOC)的准确预估是电池管理系统工作的前提。通过在MATLAB/Simulink中建立电池的Thevenin模型,并经过实验获得SOC与开路电压之间的关系,对扩展卡尔曼滤波(extend...电池储能在当前能源结构中有着至关重要的作用,其荷电状态(state of charge,SOC)的准确预估是电池管理系统工作的前提。通过在MATLAB/Simulink中建立电池的Thevenin模型,并经过实验获得SOC与开路电压之间的关系,对扩展卡尔曼滤波(extended Kalman filter,EKF)算法、无迹卡尔曼滤波(unscented Kalman filter,UKF)算法进行了分析与模型的搭建,在实际工况输入下进行了SOC预估并与真实值进行了对比分析。最后,依据对EKF、UKF算法仿真结果的分析,提出了联合EKF-UKF算法,即初始阶段采用收敛速度快的EKF算法,之后采用误差低的UKF算法求取SOC值,仿真结果表明该算法能够有效提升SOC预估过程中稳定性。展开更多