传统铁路基础设施维护手段单一,依赖于作业车辆上的工程人员进行手动操作,耗费大量人力物力。作为一种多尺度、多概率及长周期的数字映射方案,数字孪生系统近年来在工程建设领域发展迅速。为了推动轨道交通领域的数字孪生建设,设计了一...传统铁路基础设施维护手段单一,依赖于作业车辆上的工程人员进行手动操作,耗费大量人力物力。作为一种多尺度、多概率及长周期的数字映射方案,数字孪生系统近年来在工程建设领域发展迅速。为了推动轨道交通领域的数字孪生建设,设计了一种基于轨道车辆的高精度同时定位与建图(simultaneous localization and mapping,SLAM)方案。不同于传统移动测量方法需要高精度三维激光扫描仪、高精度惯性测量单元(inertial measurement unit,IMU)、实时动态差分定位(real time kinematic,RTK)以及复杂的后处理手段,该方案基于因子图优化的紧耦合方案,融合多个棱镜式雷达、IMU及RTK观测,实现了实时建图可视化。经过超300 km的场景验证,发现所提方案在良好环境下可以达到厘米级定位精度,实时输出的建图结果中可清晰观测到各种轨道特征。展开更多
文摘传统铁路基础设施维护手段单一,依赖于作业车辆上的工程人员进行手动操作,耗费大量人力物力。作为一种多尺度、多概率及长周期的数字映射方案,数字孪生系统近年来在工程建设领域发展迅速。为了推动轨道交通领域的数字孪生建设,设计了一种基于轨道车辆的高精度同时定位与建图(simultaneous localization and mapping,SLAM)方案。不同于传统移动测量方法需要高精度三维激光扫描仪、高精度惯性测量单元(inertial measurement unit,IMU)、实时动态差分定位(real time kinematic,RTK)以及复杂的后处理手段,该方案基于因子图优化的紧耦合方案,融合多个棱镜式雷达、IMU及RTK观测,实现了实时建图可视化。经过超300 km的场景验证,发现所提方案在良好环境下可以达到厘米级定位精度,实时输出的建图结果中可清晰观测到各种轨道特征。