目的高光谱遥感中,通常利用像素的光谱特征来区分背景地物和异常目标,即通过二者之间的光谱差异来寻找图像中的异常像元。但传统的异常检测算法并未有效挖掘光谱的深层特征,高光谱图像中丰富的光谱信息没有被充分利用。针对这一问题,本...目的高光谱遥感中,通常利用像素的光谱特征来区分背景地物和异常目标,即通过二者之间的光谱差异来寻找图像中的异常像元。但传统的异常检测算法并未有效挖掘光谱的深层特征,高光谱图像中丰富的光谱信息没有被充分利用。针对这一问题,本文提出结合孪生神经网络和像素配对策略的高光谱图像异常检测方法,利用深度学习技术提取高光谱图像的深层非线性特征,提高异常检测精度。方法采用像素配对的思想构建训练样本,与原始数据集相比,配对得到的新数据集数量呈指数增长,从而满足深度网络对数据集数量的需求。搭建含有特征提取模块和特征处理模块的孪生网络模型,其中,特征处理模块中的卷积层可以专注于提取像素对之间的差异特征,随后利用新的训练像素对数据集进行训练,并将训练好的分类模型固定参数,迁移至检测过程。用滑动双窗口策略对测试集进行配对处理,将测试像素对数据集送入网络模型,得到每个像素相较于周围背景像素的差异性分数,从而识别测试场景中的异常地物。结果在异常检测的实验结果中,本文提出的孪生网络模型在San Diego数据集的两幅场景和ABU-Airport数据集的一幅场景上,得到的AUC(area under the curve)值分别为0.99351、0.98121和0.98438,在3个测试集上的表现较传统方法和基于卷积神经网络的异常检测算法具有明显优势。结论本文方法可以提取输入像素对的深层光谱特征,并根据其特征的差异性,让网络学习到二者的区分度,从而更好地赋予待测像素相对于周围背景的异常分数。本文方法相对于卷积神经网络的异常检测方法可以有效地降低虚警,与传统方法相比能够更加明显地突出异常目标,提高了检测率,同时也具有较强的鲁棒性。展开更多
文摘目的高光谱遥感中,通常利用像素的光谱特征来区分背景地物和异常目标,即通过二者之间的光谱差异来寻找图像中的异常像元。但传统的异常检测算法并未有效挖掘光谱的深层特征,高光谱图像中丰富的光谱信息没有被充分利用。针对这一问题,本文提出结合孪生神经网络和像素配对策略的高光谱图像异常检测方法,利用深度学习技术提取高光谱图像的深层非线性特征,提高异常检测精度。方法采用像素配对的思想构建训练样本,与原始数据集相比,配对得到的新数据集数量呈指数增长,从而满足深度网络对数据集数量的需求。搭建含有特征提取模块和特征处理模块的孪生网络模型,其中,特征处理模块中的卷积层可以专注于提取像素对之间的差异特征,随后利用新的训练像素对数据集进行训练,并将训练好的分类模型固定参数,迁移至检测过程。用滑动双窗口策略对测试集进行配对处理,将测试像素对数据集送入网络模型,得到每个像素相较于周围背景像素的差异性分数,从而识别测试场景中的异常地物。结果在异常检测的实验结果中,本文提出的孪生网络模型在San Diego数据集的两幅场景和ABU-Airport数据集的一幅场景上,得到的AUC(area under the curve)值分别为0.99351、0.98121和0.98438,在3个测试集上的表现较传统方法和基于卷积神经网络的异常检测算法具有明显优势。结论本文方法可以提取输入像素对的深层光谱特征,并根据其特征的差异性,让网络学习到二者的区分度,从而更好地赋予待测像素相对于周围背景的异常分数。本文方法相对于卷积神经网络的异常检测方法可以有效地降低虚警,与传统方法相比能够更加明显地突出异常目标,提高了检测率,同时也具有较强的鲁棒性。