The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum ...The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick's law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials—the potential well and barrier—which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems.展开更多
The behavior of graphene bombarded by fullerene(C60 and C70)and its derivatives through using nonequilibrium molecular dynamics method are studied.The microscopic mechanism of passing through graphene is obviously rel...The behavior of graphene bombarded by fullerene(C60 and C70)and its derivatives through using nonequilibrium molecular dynamics method are studied.The microscopic mechanism of passing through graphene is obviously related to the initial structure of destroying carbon-carbon bonds and the strong interaction between the circular region of graphene and the cluster.The probability of passing through graphene depends on the incident velocity of clusters,the species of clusters,the temperature of heat baths,and the defect of graphene.Our results can provide a perspective for further understanding the mechanism of generating nanopores in graphene.The clusters used here may also bring about some potential utilities in tie functionalization of graphene and the production of nanopores.展开更多
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313367)the Fundamental Research Fund for the Central Universities,China(Grant No.11614341)
文摘The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick's law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials—the potential well and barrier—which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos.11004082,and 11291240477the Natural Science Foundation of Guangdong Province under Grant No.2014A030313367the Fundamental Research Funds for the Central Universities,Jinan University under Grant Nos.21611437 and 11614341
文摘The behavior of graphene bombarded by fullerene(C60 and C70)and its derivatives through using nonequilibrium molecular dynamics method are studied.The microscopic mechanism of passing through graphene is obviously related to the initial structure of destroying carbon-carbon bonds and the strong interaction between the circular region of graphene and the cluster.The probability of passing through graphene depends on the incident velocity of clusters,the species of clusters,the temperature of heat baths,and the defect of graphene.Our results can provide a perspective for further understanding the mechanism of generating nanopores in graphene.The clusters used here may also bring about some potential utilities in tie functionalization of graphene and the production of nanopores.