期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种改进的Mask RCNN特征融合实例分割方法 被引量:18
1
作者 温尧乐 李林燕 +1 位作者 尚欣茹 胡伏原 《计算机应用与软件》 北大核心 2019年第10期130-133,共4页
实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径... 实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径来增强整个特征层次,缩短较低层特征与顶部特征之间的融合路径,增强低层特征在整个特征层次中的作用;在卷积神经网络中引入空洞卷积算法扩大卷积感受域,进一步提升掩膜预测准确度。在MicrosoftCOCO数据集测试结果表明,该方法有效提高了实例分割的准确度。 展开更多
关键词 实例分割 特征融合 卷积神经网络 空洞卷积
下载PDF
一种基于YOLO算法的鱼群检测方法 被引量:13
2
作者 沈军宇 李林燕 +3 位作者 夏振平 张艳宁 温尧乐 胡伏原 《中国体视学与图像分析》 2018年第2期174-180,共7页
鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学... 鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学习方法相结合,提出了一种基于YOLO算法的端到端鱼群检测方法,通过提取整张图像的特征,利用卷积运算与非极大值抑制处理后直接估计出该图像内各目标位置信息,处理速度大幅度提升。同时,针对光线较暗的水下场景,算法依然能够实现场景中鱼群的检测定位。在Labeled Fishes in the Wild图像数据集上验证了本算法,可以达到30帧/秒的处理速度,对实时视频中鱼群的检测精度能够达到90%以上。 展开更多
关键词 YOLO算法 鱼群检测 图像处理 计算机视觉
下载PDF
孪生导向锚框RPN网络实时目标跟踪 被引量:10
3
作者 尚欣茹 温尧乐 +1 位作者 奚雪峰 胡伏原 《中国图象图形学报》 CSCD 北大核心 2021年第2期415-424,共10页
目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network,Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框... 目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network,Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框并影响跟踪的精度和速度。为了解决该问题,本文提出了孪生导向锚框RPN网络(Siamese-guided anchor RPN,Siamese GA-RPN)。方法Siamese GA-RPN的主要思想是利用语义特征来指导锚框生成。其中导向锚框网络包括位置预测模块和形状预测模块,这两个模块分别利用孪生网络中CNN(convolutional neural network)产生的语义特征预测锚框的位置和长宽尺寸,减少了冗余锚框的产生。然后,进一步设计了特征自适应模块,利用每个锚框的形状信息,通过可变卷积层来修正跟踪目标的原始特征图,降低目标特征与锚框信息的不一致性,提高了目标跟踪的准确性。结果在3个具有挑战性的视频跟踪基准数据集VOT(video object tracking)2015、VOT2016和VOT2017上进行了跟踪实验,测试了算法在目标快速移动、遮挡和光照等复杂场景下的跟踪性能,并与多种优秀算法在准确性和鲁棒性两个评价指标上进行定量比较。在VOT2015数据集上,本文算法与孪生RPN网络相比,准确性提高了1.72%,鲁棒性提高了5.17%;在VOT2016数据集上,本文算法与孪生RPN网络相比,准确性提高了3.6%,鲁棒性提高了6.6%;在VOT2017数据集上进行实时实验,本文算法表现出了较好的实时跟踪效果。结论通过孪生导向锚框RPN网络提高了锚框生成的有效性,确保了特征与锚框的一致性,实现了对目标的精确定位,较好地解决了锚框尺寸对目标跟踪精度的影响。在目标尺度发生变化、遮挡、光照条件变化和目标快速运动等复杂场景下仍然表现出了较强的鲁棒性和适应性。 展开更多
关键词 目标跟踪 孪生网络 RPN网络 导向锚框 特征适应
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部