期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
原位合成稳定的Ti^(3+)自修饰介孔TiO_2光催化剂在环境净化中的应用(英文) 被引量:3
1
作者 温美成 章姗姗 +2 位作者 戴文锐 李贵生 张蝶青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第12期2095-2102,共8页
半导体光催化剂Ti O2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相Ti O2禁带宽度约为3.2 e V,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到... 半导体光催化剂Ti O2因具有绿色环保无污染、化学稳定性好及可实现稳定产氢等优点而广泛应用于光解水、废水处理和空气净化等领域.然而,锐钛矿相Ti O2禁带宽度约为3.2 e V,仅对紫外光响应.而在太阳光中,44%左右为可见光,紫外光仅占不到4%.为了提高Ti O2对太阳光的利用率和在可见光照射下的光催化活性,近年来人们采用掺杂金属/非金属离子以及与可见光催化剂复合等方法对Ti O2进行改性.但是这些离子掺杂的方法会不可避免地在Ti O2晶格中形成结构缺陷,这些结构缺陷作为光生电子和空穴的复合中心不利于电子和空穴分离.最近研究表明,通过Ti3+自掺杂可以很好提高Ti O2可见光催化活性,但是目前制备Ti3+掺杂Ti O2的方法较复杂,形成的Ti3+掺杂易在表面积聚而被进一步氧化,影响其光催化稳定性,不利于实际应用.因此,开发具有良好电子-空穴分离效率的可见光催化剂引起了广泛的研究兴趣.本文通过原位自掺杂Ti3+来提高Ti O2可见光光催化活性.以Ti Cl3为钛源,H2O为溶剂,F127为软模板,采用溶剂挥发诱导自组装的方法制备了蠕虫状Ti3+自掺杂的介孔Ti O2.采用X射线衍射(XRD)、N2物理吸附、紫外-可见漫反射(UV-vis)、透射电子显微镜和电子顺磁共振(EPR)对所制备样品结构、结晶度和形貌等进行了表征分析.通过控制表面活性剂用量和焙烧温度优化了Ti3+自掺杂介孔Ti O2的光催化活性.结果表明,在模拟太阳光照射下,所制样品对气相光催化氧化NO和水相降解有机染料亚甲基蓝表现出优异的催化性能和稳定性.Ti3+自掺杂介孔Ti O2有效扩展了催化剂的光吸收范围,提高了光生电子空穴的迁移效率.其优异的光催化活性和稳定性主要归因于掺杂在Ti O+2骨架中的Ti3和所合成催化剂多孔性之间的协同效果.固体UV-vis结果表明,所合成的Ti O+2具有很好的可见光响应,主要归因于在Ti O2材料合成过程中,部分Ti3+未被完全氧化,Ti3掺入可以有效降低Ti O2的禁带宽度.通过计算可知合成的Ti O2禁带宽度为2.7 e V.通过低温EPR测试进一步证明了Ti3+的存在,而且Ti3+主要掺杂在Ti O2体相中.N2物理吸附结果表明,随焙烧温度不断提高,所得产物的比表面积先增加后减少,当焙烧温度在500 oC时,比表面积最大,但至550 oC时,比表面积、孔径和孔体积增大,表明催化剂的孔结构被破坏.表面活性剂F127的用量对样品比表面积和孔径大小也有影响,当其用量为0.54 g时,所得产物的比表面积最大.我们将所合成的Ti O2应用于污染气体NO的氧化,考察了焙烧温度和表面活性剂用量对光催化剂性能的影响.结果表明,当表面活性剂用量为0.54 g,焙烧温度为500 oC时,所制催化剂在模拟太阳光和可见光照射下都表现出最好的NO去除转化率.将使用过的催化剂离心洗涤后进行连续反应3.5 h,依然保持很高的NO去除转化率.催化剂高活性及稳定性的主要原因是Ti3+的掺杂将Ti O2光响应范围拓展到可见光区域,且Ti3+掺杂和介孔结构之间的协同作用有利于促进光生电子和空穴的分离.当催化剂在低于500 oC焙烧时,所得催化剂结晶度较低,不利于光生电子-空穴的分离,而高温焙烧则会导致催化剂介孔结构遭到破坏,不利于NO气体吸附和产物脱附.表面活性剂对催化剂活性影响较小,在可见光照射下催化剂均表现出很好的光催化活性.此外,该Ti3+自掺杂介孔Ti O2在液相条件下对有机染料亚甲基蓝也表现出很好的去除效果,可见光照射2 h,亚甲基蓝去除率接近100%. 展开更多
关键词 钛(III)自掺杂 介孔二氧化钛 溶剂挥发诱导自组装 一氧化氮氧化 光催化
下载PDF
金属Bi原位修饰具有(110)暴露面和表面氧空位的BiOBr以增强太阳光催化降解气相正己烷 被引量:5
2
作者 余晴晴 陈江耀 +4 位作者 李彦旭 温美成 刘宏利 李桂英 安太 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1603-1612,共10页
烷烃是石油化工行业排放的一类重要的人为污染物.烷烃排放到大气后,很容易与大气中的活性物质发生反应,转化为复杂的臭氧和有机气溶胶等二次污染物.而这些二次污染物对大气环境和人类的负面影响更为显著.因此,有效地消除排放源中的烷烃... 烷烃是石油化工行业排放的一类重要的人为污染物.烷烃排放到大气后,很容易与大气中的活性物质发生反应,转化为复杂的臭氧和有机气溶胶等二次污染物.而这些二次污染物对大气环境和人类的负面影响更为显著.因此,有效地消除排放源中的烷烃以实现对大气环境和人类健康的保护是迫切需要的.近些年来,基于太阳光和Bi基半导体的光催化降解气相污染物受到了研究人员的广泛关注.然而,目前有关光催化在气相直链烷烃净化中的应用仍然很少.本文采用溶剂法合成了一系列Bi/BiOBr复合材料,并将其应用于太阳光催化降解典型的气相直链烷烃正己烷.XRD, SEM和TEM表征结果表明,反应溶剂中官能团数量的增加(从甲醇、乙二醇到甘油)和溶剂热温度的提高(从160, 180到200℃)均有助于实现具有(110)暴露面的BiOBr纳米板上金属Bi纳米球的原位修饰.同时Raman和XPS表征结果表明, Bi与BiOBr在(110)暴露面上形成了化学键,进而导致表面氧空位形成.在实验室自制的光催化反应器中研究了Bi/BiOBr复合材料的太阳光催化降解正己烷性能.120 min的降解反应结果表明,适量金属Bi原位修饰有利于促进BiOBr对正己烷的太阳光催化降解性能(初始浓度为15 ppmv的正己烷去除效率最高达97.4%).进一步结合UV-Vis, EPR,光电流和PL的表征结果发现,适量Bi原位修饰Bi OBr后复合材料表现出更高的可见光响应、更窄的带隙、更大的光电流、更低的电荷载流子复合率以及更强的·O2–和h+形成,最终实现高的光催化性能.本文的结论可有效拓宽Bi基光催化技术在净化石油化工行业排放的气体直链污染物中的应用. 展开更多
关键词 Bi/BiOBr复合材料 (110)暴露面 表面氧空位 太阳光催化 气相烷烃降解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部