为了优化双足步行机器人行走过程中的能量消耗,建立机器人的柔性踝关节和柔性膝关节,分析在机器人单腿支撑阶段,矢状面运动中柔性关节的刚度对关节电机输出转矩和能量消耗的影响。首先,建立双足步行机器人的5连杆模型,分别在该模型的踝...为了优化双足步行机器人行走过程中的能量消耗,建立机器人的柔性踝关节和柔性膝关节,分析在机器人单腿支撑阶段,矢状面运动中柔性关节的刚度对关节电机输出转矩和能量消耗的影响。首先,建立双足步行机器人的5连杆模型,分别在该模型的踝关节和膝关节对柔性进行改进;其次,采用基于零力矩点(zero moment point,ZMP)稳定判据的步态规划方法,通过给定ZMP轨迹获取机器人质心轨迹,插值得到机器人在刚性路面的离线步态;最后,基于改进的柔性关节5连杆步行机器人模型,分别采用拉格朗日方程解析法和虚拟样机动力学仿真法,分析柔性踝关节和膝关节的刚度对关节电机输出转矩和能量消耗的影响。研究结果表明:适当选择柔性关节的刚度可以有效地减小关节电机的输出转矩和能量消耗;柔性踝关节和膝关节分别存在1个最佳刚度,在此刚度下关节电机的能量消耗可以降到最小,与解析法中刚性关节相比分别减小89.87%和90.11%,与动力学仿真中刚性关节相比分别减小88.66%和81.23%。展开更多
针对平行于管道轴线的纵向裂纹缺陷检测,分析导波激励信号的中心频率、缺陷轴向长度等因素对反射系数的综合影响。首先,建立带裂纹缺陷管道的有限元模型;根据频散曲线特征,确定形成T(0,1)扭转模态波的激励频率;其次,在低频段取3种不同...针对平行于管道轴线的纵向裂纹缺陷检测,分析导波激励信号的中心频率、缺陷轴向长度等因素对反射系数的综合影响。首先,建立带裂纹缺陷管道的有限元模型;根据频散曲线特征,确定形成T(0,1)扭转模态波的激励频率;其次,在低频段取3种不同的激励信号中心频率,对纵向裂纹缺陷模拟检测的数值仿真,通过改变裂纹的轴向长度,分析其对缺陷回波特征的影响。结果表明:T(0,1)扭转波检测纵向裂纹的轴向定位误差约为5%;周向反射系数最大值出现在裂纹对应的周向位置;设置中心频率为27 k Hz时,回波反射系数随裂纹长度的增大,先增大后减小。通过以上分析可以得出T(0,1)扭转波对纵向裂纹轴向定位和周向定位的方法。展开更多
文摘为了优化双足步行机器人行走过程中的能量消耗,建立机器人的柔性踝关节和柔性膝关节,分析在机器人单腿支撑阶段,矢状面运动中柔性关节的刚度对关节电机输出转矩和能量消耗的影响。首先,建立双足步行机器人的5连杆模型,分别在该模型的踝关节和膝关节对柔性进行改进;其次,采用基于零力矩点(zero moment point,ZMP)稳定判据的步态规划方法,通过给定ZMP轨迹获取机器人质心轨迹,插值得到机器人在刚性路面的离线步态;最后,基于改进的柔性关节5连杆步行机器人模型,分别采用拉格朗日方程解析法和虚拟样机动力学仿真法,分析柔性踝关节和膝关节的刚度对关节电机输出转矩和能量消耗的影响。研究结果表明:适当选择柔性关节的刚度可以有效地减小关节电机的输出转矩和能量消耗;柔性踝关节和膝关节分别存在1个最佳刚度,在此刚度下关节电机的能量消耗可以降到最小,与解析法中刚性关节相比分别减小89.87%和90.11%,与动力学仿真中刚性关节相比分别减小88.66%和81.23%。
文摘针对平行于管道轴线的纵向裂纹缺陷检测,分析导波激励信号的中心频率、缺陷轴向长度等因素对反射系数的综合影响。首先,建立带裂纹缺陷管道的有限元模型;根据频散曲线特征,确定形成T(0,1)扭转模态波的激励频率;其次,在低频段取3种不同的激励信号中心频率,对纵向裂纹缺陷模拟检测的数值仿真,通过改变裂纹的轴向长度,分析其对缺陷回波特征的影响。结果表明:T(0,1)扭转波检测纵向裂纹的轴向定位误差约为5%;周向反射系数最大值出现在裂纹对应的周向位置;设置中心频率为27 k Hz时,回波反射系数随裂纹长度的增大,先增大后减小。通过以上分析可以得出T(0,1)扭转波对纵向裂纹轴向定位和周向定位的方法。