期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
非完整约束Hamilton动力系统保结构算法 被引量:6
1
作者 满淑敏 高强 钟万勰 《应用数学和力学》 CSCD 北大核心 2020年第6期581-590,共10页
基于变分积分的思想和对偶变量表示的Lagrange-d’Alembert原理,构造了一类求解非完整约束Hamilton动力系统的高阶保结构算法.基于变分积分法,选取适当的多项式及数值积分方法,将对偶变量形式的Lagrange-d’Alembert原理进行离散.在此... 基于变分积分的思想和对偶变量表示的Lagrange-d’Alembert原理,构造了一类求解非完整约束Hamilton动力系统的高阶保结构算法.基于变分积分法,选取适当的多项式及数值积分方法,将对偶变量形式的Lagrange-d’Alembert原理进行离散.在此离散原理的基础上,以积分区间两端位移为独立变量,同时要求在区间端点处及区间内部的控制点处严格满足非完整约束,从而得到数值积分方法.给出了算法的对称性证明.数值算例表明算法具有高阶收敛性,严格满足非完整约束,且在长时间仿真后,依然能保持良好的数值性质. 展开更多
关键词 非完整约束 变分积分 保结构算法 对偶变量
下载PDF
基于对偶变量变分原理的完整约束系统保辛算法 被引量:1
2
作者 满淑敏 高强 钟万勰 《计算力学学报》 EI CAS CSCD 北大核心 2020年第6期655-660,共6页
基于对偶变量变分原理,选择积分区间两端位移为独立变量,构造了求解完整约束哈密顿动力系统的高阶保辛算法。首先,利用拉格朗日多项式对作用量中的位移、动量及拉格朗日乘子进行近似;然后,对作用量中不包含约束的积分项采用Gauss积分近... 基于对偶变量变分原理,选择积分区间两端位移为独立变量,构造了求解完整约束哈密顿动力系统的高阶保辛算法。首先,利用拉格朗日多项式对作用量中的位移、动量及拉格朗日乘子进行近似;然后,对作用量中不包含约束的积分项采用Gauss积分近似,对作用量中包含约束的积分项采用Lobatto积分近似,从而得到近似作用量;最后,在此近似作用量的基础上,利用对偶变量变分原理,将求解完整约束哈密顿动力系统问题转化为一组非线性方程组的求解。算法具有保辛性和高阶收敛性,能够在位移的插值点处高精度地满足完整约束。算法的收敛阶数及数值性质通过数值算例验证。 展开更多
关键词 保辛 完整约束 哈密顿系统 对偶变量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部