Bulk nanocrystalline SmCo6Fe sintered magnet was prepared by Spark Plasma Sintering technique (SPS). XRD patterns show that the magnet exhibits a stable TbCu7 structure. TEM observation indicates that the microstructu...Bulk nanocrystalline SmCo6Fe sintered magnet was prepared by Spark Plasma Sintering technique (SPS). XRD patterns show that the magnet exhibits a stable TbCu7 structure. TEM observation indicates that the microstructure of the magnet is composed of SmCo6Fe single phase grains with an average grain size of 30 nm. Magnetic measurement shows that under 9 T magnetic field, the coercivity of the magnet reaches 1.12 T; the saturation magnetization and the remanence are 1.13 and 0.67 T, respectively. The magnet has a (BH)max of 75.6 kJ·cm-3.展开更多
基金the National Natural Science Funding (50201001)Beijing Natural Science Foundation (2041001)National High Technology Research and Development Program of China (2007AA03Z458)
文摘Bulk nanocrystalline SmCo6Fe sintered magnet was prepared by Spark Plasma Sintering technique (SPS). XRD patterns show that the magnet exhibits a stable TbCu7 structure. TEM observation indicates that the microstructure of the magnet is composed of SmCo6Fe single phase grains with an average grain size of 30 nm. Magnetic measurement shows that under 9 T magnetic field, the coercivity of the magnet reaches 1.12 T; the saturation magnetization and the remanence are 1.13 and 0.67 T, respectively. The magnet has a (BH)max of 75.6 kJ·cm-3.