The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here...The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here, a new type of cartridge valve core structure is proposed to solve this problem. The numerical simulationmethod is applied to analyze the flow characteristics of clearance flow field on velocity distribution, pressuredistribution, valve core motion speed, and leakage. The results using computational fluid dynamics (CFD) showthat the guide groove is set on the surface of the cartridge valve core, increasing the connecting length of thevalve core, forming a uniform radial pressure distribution and velocity distribution, effectively reducing the lateralforce, and at the same time ensuring that the leak is not too big. These findings provide theoretical guidance anda basis for optimizing cartridge valve to reduce the occurrence of jamming and improve the response frequency.展开更多
基金the Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(No.2020KJ019)the Key R&D Projects of Shanxi Province(No.201903D121041)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(No.20191044)the“1331 Project”of Shanxi Province(No.2020-44)。
文摘The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here, a new type of cartridge valve core structure is proposed to solve this problem. The numerical simulationmethod is applied to analyze the flow characteristics of clearance flow field on velocity distribution, pressuredistribution, valve core motion speed, and leakage. The results using computational fluid dynamics (CFD) showthat the guide groove is set on the surface of the cartridge valve core, increasing the connecting length of thevalve core, forming a uniform radial pressure distribution and velocity distribution, effectively reducing the lateralforce, and at the same time ensuring that the leak is not too big. These findings provide theoretical guidance anda basis for optimizing cartridge valve to reduce the occurrence of jamming and improve the response frequency.