提出一种基于TV模型和深度学习Goog Le Net模型的甲状腺结节图像分类方法,采用基于TV模型的自适应图像修复方法对甲状腺超声图像进行预处理,消除边框标记。为提升网络的结节分类性能,采用深度学习的方法,构建GoogLeNetIncepetion V1模...提出一种基于TV模型和深度学习Goog Le Net模型的甲状腺结节图像分类方法,采用基于TV模型的自适应图像修复方法对甲状腺超声图像进行预处理,消除边框标记。为提升网络的结节分类性能,采用深度学习的方法,构建GoogLeNetIncepetion V1模型对甲状腺超声波图像数据集进行实验。在各类病变和正常的甲状腺医疗图像数据集上的实验结果显示,该方法的分类诊断准确率为96.04%,具有非常可观的临床应用价值。展开更多
文摘提出一种基于TV模型和深度学习Goog Le Net模型的甲状腺结节图像分类方法,采用基于TV模型的自适应图像修复方法对甲状腺超声图像进行预处理,消除边框标记。为提升网络的结节分类性能,采用深度学习的方法,构建GoogLeNetIncepetion V1模型对甲状腺超声波图像数据集进行实验。在各类病变和正常的甲状腺医疗图像数据集上的实验结果显示,该方法的分类诊断准确率为96.04%,具有非常可观的临床应用价值。