期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
激光驱动晶体发射低阶谐波强度随激光波长的变化规律
1
作者 火勋琴 管仲 周效信 《原子与分子物理学报》 CAS 北大核心 2021年第4期103-108,共6页
通过数值求解激光驱动下电子在一维周期势场中运动的薛定谔方程,研究了晶体在激光场中发射的低阶谐波强度随激光波长的变化规律,结果表明,晶体发射低阶谐波强度随激光波长的变化规律与晶体发射高次谐波第一平台区域的变化规律不同.已有... 通过数值求解激光驱动下电子在一维周期势场中运动的薛定谔方程,研究了晶体在激光场中发射的低阶谐波强度随激光波长的变化规律,结果表明,晶体发射低阶谐波强度随激光波长的变化规律与晶体发射高次谐波第一平台区域的变化规律不同.已有的研究表明晶体发射高次谐波第一平台区域的强度会随激光波长的增加而衰减,而我们发现晶体发射低阶谐波的强度会随激光波长的增加而增加.通过对晶体发射低阶谐波的时频分析、晶体价带能量变化与激光光子能量的关系,解释了晶体发射低阶谐波强度随激光波长增加而增加的原因. 展开更多
关键词 低阶谐波 晶体 价带能量
下载PDF
Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
2
作者 Xun-Qin Huo Wei-Feng Yang +4 位作者 Wen-Hui Dong Fa-Cheng Jin Xi-Wang Liu Hong-Dan Zhang Xiao-Hong Song 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期1-15,共15页
The semiclassical method based on Feynman’s path-integral is in favor of uncovering the quantum tunneling effect,the classical trajectory description of the electron, and the quantum phase information, which can pres... The semiclassical method based on Feynman’s path-integral is in favor of uncovering the quantum tunneling effect,the classical trajectory description of the electron, and the quantum phase information, which can present an intuitive and transparent physical image of electron’s propagation in comparison with the ab initio time-dependent Schr ¨odinger equation.In this review, we introduce the basic theoretical concepts and development of several semiclassical methods as well as some of their applications in strong-field physics. Special emphasis is placed on extracting time delay on attosecond scale by the combination of the semiclassical method with phase of phase method. Hundreds of millions of trajectories are generally adopted to obtain a relatively high-resolution photoelectron spectrum, which would take a large amount of time. Here we also introduce several optimization approaches of the semiclassical method to overcome the time-consuming problem of violence calculation. 展开更多
关键词 semiclassical method attosecond time delay Phase of Phase deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部