期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
中文领域命名实体识别综述 被引量:39
1
作者 焦凯楠 李欣 朱容辰 《计算机工程与应用》 CSCD 北大核心 2021年第16期1-15,共15页
命名实体识别(Named Entity Recognition,NER)作为自然语言处理领域经典的研究主题,是智能问答、知识图谱等任务的基础技术。领域命名实体识别(Domain Named Entity Recognition,DNER)是面向特定领域的NER方案。在深度学习技术的推动下... 命名实体识别(Named Entity Recognition,NER)作为自然语言处理领域经典的研究主题,是智能问答、知识图谱等任务的基础技术。领域命名实体识别(Domain Named Entity Recognition,DNER)是面向特定领域的NER方案。在深度学习技术的推动下,中文DNER取得了突破性进展。概括了中文DNER的研究框架,从领域数据源的确定、领域实体类型及规范制定、领域数据集的标注规范、中文DNER评估指标四个角度对国内外已有研究成果进行了综合评述;总结了目前常见的中文DNER的技术框架,介绍了基于词典和规则的模式匹配方法、统计机器学习方法、基于深度学习的方法、多方融合的深度学习方法,并重点分析了基于词向量表征和深度学习的中文DNER方法;讨论了中文DNER的典型应用场景,对未来发展方向进行了展望。 展开更多
关键词 自然语言处理 中文领域命名实体识别 深度学习
下载PDF
基于MacBERT-BiLSTM-CRF的反恐领域细粒度实体识别 被引量:8
2
作者 焦凯楠 李欣 +2 位作者 叶瀚 朱容辰 孙海春 《科学技术与工程》 北大核心 2021年第29期12638-12648,共11页
为验证基于深度学习的命名实体识别框架在反恐领域的有效性,参照ACE 2005实体标注规范,制订了细粒度反恐实体标签体系,构建了反恐实体语料集Anti-Terr-Corpus;提出基于MacBERT-BiLSTM-CRF的实体识别模型,通过能减少预训练和微调阶段差异... 为验证基于深度学习的命名实体识别框架在反恐领域的有效性,参照ACE 2005实体标注规范,制订了细粒度反恐实体标签体系,构建了反恐实体语料集Anti-Terr-Corpus;提出基于MacBERT-BiLSTM-CRF的实体识别模型,通过能减少预训练和微调阶段差异的MacBERT(masked language modeling as correction bidirectional encoder representations from transformers)预训练语言模型获得动态字向量表达,送入双向长短时记忆(bidirectional long short-term memory,BiLSTM)和条件随机场(conditional random field,CRF)进行上下文特征编码和解码得到最佳实体标签;替换框架中的预训练语言模型进行对比实验。实验表明该模型可以有效获取反恐新闻中的重要实体。对比BiLSTM-CRF模型,MacBERT的加入提高了24.5%的F1值;保持编码-解码层为BiLSTM-CRF时,加入MacBERT比加入ALBERT(a lite BERT)提高了5.1%的F1值。可见,深度学习有利于反恐领域实体识别,能够利用公开反恐新闻文本为后续反恐形势预判服务,同时有助于反恐领域信息提取、知识图谱构建等基础性任务。 展开更多
关键词 深度学习 预训练语言模型 反恐领域实体识别 细粒度实体识别
下载PDF
融合注意力机制与句向量压缩的长文本分类模型 被引量:4
3
作者 叶瀚 孙海春 +1 位作者 李欣 焦凯楠 《数据分析与知识发现》 CSSCI CSCD 北大核心 2022年第6期84-94,共11页
【目的】针对预训练语言模型输入长度限制的缺点进行优化,提高长文本分类的准确度。【方法】设计依据自然文本中存在的标点符号进行分句并按次序输入预训练语言模型的分类模型;提出句向量平均池化法与注意力机制加权法对分类特征向量进... 【目的】针对预训练语言模型输入长度限制的缺点进行优化,提高长文本分类的准确度。【方法】设计依据自然文本中存在的标点符号进行分句并按次序输入预训练语言模型的分类模型;提出句向量平均池化法与注意力机制加权法对分类特征向量进行压缩编码,并在多个预训练语言模型上进行实验。【结果】相比于直接截断文本内容,使用句向量压缩的模型准确率最多提升了3.74个百分点。在两种数据集上,融合注意力机制模型的F1-score相比基线模型分别平均提升1.61%和0.83%。【局限】在部分预训练语言模型上提升效果不显著。【结论】在不改变预训练语言模型架构时,结合分句内容信息的文本分类模型在不同预训练语言模型上能够有效提升分类效果。 展开更多
关键词 文本分类 预训练语言模型 特征向量 注意力机制 文本分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部