期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合反残差块和YOLOv3的目标检测法
被引量:
14
1
作者
焦天驰
李强
+1 位作者
林茂松
贺贤珍
《传感器与微系统》
CSCD
2019年第9期144-146,156,共4页
为了提高目标检测算法的实时性,提出了一种基于反残差块的轻量级目标检测方法,并将其用于行人检测。利用深度可分离卷积减少模型的参数量和卷积过程的计算量;在深度可分离卷积的基础上构造反残差块,提取高维特征。采用多尺度预测和特征...
为了提高目标检测算法的实时性,提出了一种基于反残差块的轻量级目标检测方法,并将其用于行人检测。利用深度可分离卷积减少模型的参数量和卷积过程的计算量;在深度可分离卷积的基础上构造反残差块,提取高维特征。采用多尺度预测和特征融合相结合的方法,更好地利用深层特征图的语义信息,使得模型对图像中小尺度的行人目标有较好的表征能力。运用K-means聚类方法对INRIA数据集中样本进行聚类分析。通过对比试验表明:改进后的YOLOv3方法在INRIA数据集上能够有效地检测小尺度的目标,与原方法相比在精度上提升了4.26%、召回率提升5%且检测每张图片所需的时间减少了33.6%。
展开更多
关键词
YOLOv3模型
深度可分离卷积
反残差块
K均值算法
下载PDF
职称材料
题名
结合反残差块和YOLOv3的目标检测法
被引量:
14
1
作者
焦天驰
李强
林茂松
贺贤珍
机构
西南科技大学信息工程学院
出处
《传感器与微系统》
CSCD
2019年第9期144-146,156,共4页
基金
四川省科技计划资助项目(2018GZ0095)
文摘
为了提高目标检测算法的实时性,提出了一种基于反残差块的轻量级目标检测方法,并将其用于行人检测。利用深度可分离卷积减少模型的参数量和卷积过程的计算量;在深度可分离卷积的基础上构造反残差块,提取高维特征。采用多尺度预测和特征融合相结合的方法,更好地利用深层特征图的语义信息,使得模型对图像中小尺度的行人目标有较好的表征能力。运用K-means聚类方法对INRIA数据集中样本进行聚类分析。通过对比试验表明:改进后的YOLOv3方法在INRIA数据集上能够有效地检测小尺度的目标,与原方法相比在精度上提升了4.26%、召回率提升5%且检测每张图片所需的时间减少了33.6%。
关键词
YOLOv3模型
深度可分离卷积
反残差块
K均值算法
Keywords
YOLOv3 model
depth-wise separable convolution
inverted residual block
K-means algorithm
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合反残差块和YOLOv3的目标检测法
焦天驰
李强
林茂松
贺贤珍
《传感器与微系统》
CSCD
2019
14
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部