This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reo...This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reorganizing SA aerogels via controlled heterogeneous nucleation,in which microcrystalline cellulose-manganese dioxide(MCC-MnO_(2))nano-crystallites worked as template.Due to the short rod-like structure and abundant hydroxyl groups of MCC-MnO_(2),the organized mesostructure of SA aerogels was reconstructed during the assembly of SA molecule chains,which gave rise to a significant enhancement in macroscopic performance of SA areogels.For instance,the functionalized and reconstructed MCC-MnO_(2)/SA aerogels acquired a more than 70%increase in mechanical strength with an excellent deformation recovery.Furthermore,an almost double enhancement of removal capacity for metal ions(i.e.,Cu^(2+)and Pb^(2+))and organic dyes(i.e.,congo red and methylene blue)was obtained for MnO_(2)/SA aerogels,with an 87%repossession of the pollutants removal performance after 5 operation cycles.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12074322)Shenzhen Science and Technology Plan Project (Grant No. JCYJ20180504170208402)+1 种基金Science and Technology Project of Xiamen City (Grant No. 3502Z20183012)Science and Technology Planning Project of Guangdong Province,China (Grant No. 2018B030331001)
文摘This work presents a strategy for the mesoscopic engineering of hierarchically structured sodium alginate(SA)aerogels to enhance the macroscopic performance.The strategy was implemented by meso-functionalizing and reorganizing SA aerogels via controlled heterogeneous nucleation,in which microcrystalline cellulose-manganese dioxide(MCC-MnO_(2))nano-crystallites worked as template.Due to the short rod-like structure and abundant hydroxyl groups of MCC-MnO_(2),the organized mesostructure of SA aerogels was reconstructed during the assembly of SA molecule chains,which gave rise to a significant enhancement in macroscopic performance of SA areogels.For instance,the functionalized and reconstructed MCC-MnO_(2)/SA aerogels acquired a more than 70%increase in mechanical strength with an excellent deformation recovery.Furthermore,an almost double enhancement of removal capacity for metal ions(i.e.,Cu^(2+)and Pb^(2+))and organic dyes(i.e.,congo red and methylene blue)was obtained for MnO_(2)/SA aerogels,with an 87%repossession of the pollutants removal performance after 5 operation cycles.