期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的直播弹幕情感多分类研究
1
作者
焦科元
《长江信息通信》
2024年第5期65-69,共5页
在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文...
在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文字和表情等情感符号所蕴含的内在信息对弹幕情感分析的影响,进行了颜文字和表情符号的替换。经过对比实验,MacBERT-BILSTM-CNN模型在相同数据集上的评价指标与CNN、BILSTM-CNN和MacBERT模型相比都有不同程度的提升,表明了该模型在弹幕情感多分类任务中具有更好的效果;替换情感符号后相比与原始数据集的评价指标有一定提高,证明了充分考虑情感符号蕴含的内在信息能提升弹幕情感倾向判断的准确性。
展开更多
关键词
弹幕
情感多分类
预训练语言模型
颜文字
表情符号
下载PDF
职称材料
题名
基于深度学习的直播弹幕情感多分类研究
1
作者
焦科元
机构
三峡大学计算机与信息学院
出处
《长江信息通信》
2024年第5期65-69,共5页
文摘
在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文字和表情等情感符号所蕴含的内在信息对弹幕情感分析的影响,进行了颜文字和表情符号的替换。经过对比实验,MacBERT-BILSTM-CNN模型在相同数据集上的评价指标与CNN、BILSTM-CNN和MacBERT模型相比都有不同程度的提升,表明了该模型在弹幕情感多分类任务中具有更好的效果;替换情感符号后相比与原始数据集的评价指标有一定提高,证明了充分考虑情感符号蕴含的内在信息能提升弹幕情感倾向判断的准确性。
关键词
弹幕
情感多分类
预训练语言模型
颜文字
表情符号
Keywords
Barrage
Multi classification of cmotions
Pre trained language model
Yan script
Emoticons
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的直播弹幕情感多分类研究
焦科元
《长江信息通信》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部