期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的直播弹幕情感多分类研究
1
作者 焦科元 《长江信息通信》 2024年第5期65-69,共5页
在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文... 在网络直播场景下为提高弹幕分析的准确性与高效客观性,文章提出了一种结合MacBERT预训练语言模型与BILSTM-CNN模型的弹幕情感多分类模型MacBERT-BILSTM-CNN,将情感按照乐、好、怒、愁、惊、恶和惧7种情感维度进行分类;同时考虑到颜文字和表情等情感符号所蕴含的内在信息对弹幕情感分析的影响,进行了颜文字和表情符号的替换。经过对比实验,MacBERT-BILSTM-CNN模型在相同数据集上的评价指标与CNN、BILSTM-CNN和MacBERT模型相比都有不同程度的提升,表明了该模型在弹幕情感多分类任务中具有更好的效果;替换情感符号后相比与原始数据集的评价指标有一定提高,证明了充分考虑情感符号蕴含的内在信息能提升弹幕情感倾向判断的准确性。 展开更多
关键词 弹幕 情感多分类 预训练语言模型 颜文字 表情符号
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部