Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple...Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.展开更多
Using angle-resolved photoemission spectroscopy,we study electronic structures of a Kagome metal YCr6Ge6.Band dispersions along kz direction are significant,suggesting a remarkable interlayer coupling between neighbor...Using angle-resolved photoemission spectroscopy,we study electronic structures of a Kagome metal YCr6Ge6.Band dispersions along kz direction are significant,suggesting a remarkable interlayer coupling between neighboring Kagome planes.Comparing ARPES data with first-principles calculations,we find a moderate electron correlation in this material,since band calculations must be compressed in the energy scale to reach an excellent agreement between experimental data and theoretical calculations.Moreover,as indicated by band calculations,there is a flat band in the vicinity of the Fermi level at the Г–M–K plane in the momentum space,which could be responsible for the unusual transport behavior in YCr6Ge6.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1600204)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302802)+2 种基金the National Natural Science Foundation of China(Grant Nos.U1832214,U2032213,12104461,and 12074135)the High Magnetic Field Laboratory of Anhuisupported by the Start-up Project of Anhui University(Grant No.S020318001/020)。
文摘Transition metal and rare earth intermetallics have been a fertile playground for research of various quantum states.We report detailed magnetic studies on Sm Mn_(2)Ge_(2),an anisotropic itinerant magnet with multiple magnetic phases.The critical behavior of the ferromagnetic phase transition is investigated by employing the modified Arrott plot with the Kouvel-Fisher method.The critical temperature TCis determined to be around 342.7 K with critical exponents ofβ=0.417 andγ=1.122,and the interaction function is found to be J(r)~r^(-4.68),suggesting the coexistence of long-range and shortrange magnetic interactions.Our results contribute to the understanding of complex magnetism in Sm Mn_(2)Ge_(2),which may provide fundamental guidance in future spintronic applications.
基金Supported by the National Key R&D Program of China(Grant Nos.2017YFA0402901,2016YFA0401004 and 2016YFA0300404)the National Natural Science Foundation of China(Grant Nos.11674296,11974354 and U1432138)+3 种基金the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB01)the Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology(Grant No.2018CXFX002)the Collaborative Innovation Program of Hefei Science Center,CAS(Grant No.2019HSC-CIP007)the High Magnetic Field Laboratory of Anhui Province.
文摘Using angle-resolved photoemission spectroscopy,we study electronic structures of a Kagome metal YCr6Ge6.Band dispersions along kz direction are significant,suggesting a remarkable interlayer coupling between neighboring Kagome planes.Comparing ARPES data with first-principles calculations,we find a moderate electron correlation in this material,since band calculations must be compressed in the energy scale to reach an excellent agreement between experimental data and theoretical calculations.Moreover,as indicated by band calculations,there is a flat band in the vicinity of the Fermi level at the Г–M–K plane in the momentum space,which could be responsible for the unusual transport behavior in YCr6Ge6.
基金supported by the National Natural Science Foundation of China(12104007,12004366,12004367,51627901,12074212,and U19A2093)Tsinghua University-Zhejiang Deqing Joint Research Center for Materials Design and Industrial Innovation,Innovation Program for Quantum Science and Technology(2021ZD0302802)National Key R&D Program of the MOST of China(2022YFA1602603)。