Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parame...Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parameters,crucial for GW astronomy research,is particularly susceptible to such interference.In this study,we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters,seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains.Remarkably,our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques.Furthermore,our approach exhibits a greater efficiency,boasting processing times on the order of milliseconds.In conclusion,the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises,offering a promising avenue for enhancing the field of GW astronomy research.展开更多
基金the National SKA Program of China(2022SKA0110200,2022SKA0110203)the National Natural Science Foundation of China(11975072,11875102,11835009)the National 111 Project(B16009)。
文摘Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parameters,crucial for GW astronomy research,is particularly susceptible to such interference.In this study,we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters,seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains.Remarkably,our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques.Furthermore,our approach exhibits a greater efficiency,boasting processing times on the order of milliseconds.In conclusion,the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises,offering a promising avenue for enhancing the field of GW astronomy research.