通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起...通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起的综合温室效应(Global warming potential,GWP)和温室气体强度(Greenhouse gas intensity,GHGI)特征。结果表明:稻季配施20 t hm-2生物炭对N2O和CH4的排放、作物产量及GWP和GHGI均都无明显影响;稻季配施40 t hm-2生物炭能显著降低8.6%的CH4的排放和9.3%的GWP,显著增加作物产量17.2%。麦季配施20 t hm-2生物炭虽然对温室气体及GWP影响不明显,但显著增加21.6%的作物产量,从而显著降低21.7%的GHGI;麦季配施40 t hm-2生物炭能显著降低20.9%和11.3%的N2O和CH4排放,显著降低15.7%和23.5%的GWP和GHGI。因此麦季配施生物炭对减少N2O和CH4的排放、增加稻麦轮作产量及降低GWP和GHGI的效果较稻季配施生物炭效果更好。展开更多
以太湖地区主要稻田土壤类型黄泥土为对象,利用当地富营养化河水对回填土柱和植稻原状土渗漏池进行模拟稻田灌溉试验,系统研究了灌溉水对稻田土壤氮磷营养的贡献。在回填土柱灌溉试验中,在试验初期,不同形态的氮素均有较高的淋失量,以...以太湖地区主要稻田土壤类型黄泥土为对象,利用当地富营养化河水对回填土柱和植稻原状土渗漏池进行模拟稻田灌溉试验,系统研究了灌溉水对稻田土壤氮磷营养的贡献。在回填土柱灌溉试验中,在试验初期,不同形态的氮素均有较高的淋失量,以后逐渐降低,表明初期淋失的氮素主要来自土壤,而不是灌溉河水。在整个水稻生长季,均观测到有可溶性有机氮淋失,表明富营养化河水灌溉条件下可溶性有机氮是稻田土壤主要的氮素淋失形态。在本试验中,磷素的淋失动态与氮素的淋失动态截然相反,淹水后很长一段时间内均没有土壤磷素淋失,但在淹水灌溉后期有大量的土壤磷素淋失损失,这可能是淹水后期土壤对磷的吸持已达到饱和状态,不能继续固持土壤中多余的磷所致。与回填土柱模拟灌溉淋洗试验相比,在当前供肥条件下,原状土渗漏池试验氮磷淋失量远低于回填土柱试验,而灌溉水对土壤氮磷养分的贡献远高于回填土柱。通过富营养化河水灌溉带入当季稻田的N量达到每公顷56.3 kg,其中有55.8 kg N可被土壤吸持和作物吸收,表明太湖地区稻田土壤对氮磷养分来说是一个环境友好的生态系统。在利用当地富营养化河水进行稻田土壤灌溉时可适量减少肥料施用量、优化氮磷肥料管理。展开更多
文摘通过分别在水稻季(R)和小麦季(W)设置对照(RB0-N0、WB0-N0)、单施氮肥(RB0-N1、WB0-N1)、20 t hm-2生物炭与氮配施(RB1-N1、WB1-N1)、40 t hm-2生物炭与氮配施(RB2-N1、WB2-N1)等8个处理,研究稻麦轮作周年系统N2O和CH4排放规律及其引起的综合温室效应(Global warming potential,GWP)和温室气体强度(Greenhouse gas intensity,GHGI)特征。结果表明:稻季配施20 t hm-2生物炭对N2O和CH4的排放、作物产量及GWP和GHGI均都无明显影响;稻季配施40 t hm-2生物炭能显著降低8.6%的CH4的排放和9.3%的GWP,显著增加作物产量17.2%。麦季配施20 t hm-2生物炭虽然对温室气体及GWP影响不明显,但显著增加21.6%的作物产量,从而显著降低21.7%的GHGI;麦季配施40 t hm-2生物炭能显著降低20.9%和11.3%的N2O和CH4排放,显著降低15.7%和23.5%的GWP和GHGI。因此麦季配施生物炭对减少N2O和CH4的排放、增加稻麦轮作产量及降低GWP和GHGI的效果较稻季配施生物炭效果更好。
文摘以太湖地区主要稻田土壤类型黄泥土为对象,利用当地富营养化河水对回填土柱和植稻原状土渗漏池进行模拟稻田灌溉试验,系统研究了灌溉水对稻田土壤氮磷营养的贡献。在回填土柱灌溉试验中,在试验初期,不同形态的氮素均有较高的淋失量,以后逐渐降低,表明初期淋失的氮素主要来自土壤,而不是灌溉河水。在整个水稻生长季,均观测到有可溶性有机氮淋失,表明富营养化河水灌溉条件下可溶性有机氮是稻田土壤主要的氮素淋失形态。在本试验中,磷素的淋失动态与氮素的淋失动态截然相反,淹水后很长一段时间内均没有土壤磷素淋失,但在淹水灌溉后期有大量的土壤磷素淋失损失,这可能是淹水后期土壤对磷的吸持已达到饱和状态,不能继续固持土壤中多余的磷所致。与回填土柱模拟灌溉淋洗试验相比,在当前供肥条件下,原状土渗漏池试验氮磷淋失量远低于回填土柱试验,而灌溉水对土壤氮磷养分的贡献远高于回填土柱。通过富营养化河水灌溉带入当季稻田的N量达到每公顷56.3 kg,其中有55.8 kg N可被土壤吸持和作物吸收,表明太湖地区稻田土壤对氮磷养分来说是一个环境友好的生态系统。在利用当地富营养化河水进行稻田土壤灌溉时可适量减少肥料施用量、优化氮磷肥料管理。